{"title":"Large \\(p\\)-Core \\(p'\\)-Partitions and Walks on the Additive Residue Graph","authors":"Eoghan McDowell","doi":"10.1007/s00026-022-00622-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates partitions which have neither parts nor hook lengths divisible by <span>\\(p\\)</span>, referred to as <span>\\(p\\)</span>-core <span>\\(p'\\)</span>-partitions. We show that the largest <span>\\(p\\)</span>-core <span>\\(p'\\)</span>-partition corresponds to the longest walk on a graph with vertices <span>\\(\\{0, 1, \\ldots , p-1\\}\\)</span> and labelled edges defined via addition modulo <span>\\(p\\)</span>. We also exhibit an explicit family of large <span>\\(p\\)</span>-core <span>\\(p'\\)</span>-partitions, giving a lower bound on the size of the largest such partition which is of the same degree as the upper bound found by McSpirit and Ono.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00622-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper investigates partitions which have neither parts nor hook lengths divisible by \(p\), referred to as \(p\)-core \(p'\)-partitions. We show that the largest \(p\)-core \(p'\)-partition corresponds to the longest walk on a graph with vertices \(\{0, 1, \ldots , p-1\}\) and labelled edges defined via addition modulo \(p\). We also exhibit an explicit family of large \(p\)-core \(p'\)-partitions, giving a lower bound on the size of the largest such partition which is of the same degree as the upper bound found by McSpirit and Ono.