Assessing the impact of case-mix heterogeneity in individual participant data meta-analysis: Novel use of I2 statistic and prediction interval

Tat-Thang Vo, R. Porcher, S. Vansteelandt
{"title":"Assessing the impact of case-mix heterogeneity in individual participant data meta-analysis: Novel use of I2 statistic and prediction interval","authors":"Tat-Thang Vo, R. Porcher, S. Vansteelandt","doi":"10.1177/2632084320957207","DOIUrl":null,"url":null,"abstract":"Case mix differences between trials form an important factor that contributes to the statistical heterogeneity observed in a meta-analysis. In this paper, we propose two methods to assess whether important heterogeneity would remain if the different trials in the meta-analysis were conducted in one common population defined by a given case-mix. To achieve this goal, we first standardize results of different trials over the case-mix of a target population. We then quantify the amount of heterogeneity arising from case-mix and beyond case-mix reasons by using corresponding I2 statistics and prediction intervals. These new approaches enable a better understanding of the overall heterogeneity between trial results, and can be used to support standard heterogeneity assessments in individual participant data meta-analysis practice.","PeriodicalId":74683,"journal":{"name":"Research methods in medicine & health sciences","volume":"2 1","pages":"12 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2632084320957207","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research methods in medicine & health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2632084320957207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Case mix differences between trials form an important factor that contributes to the statistical heterogeneity observed in a meta-analysis. In this paper, we propose two methods to assess whether important heterogeneity would remain if the different trials in the meta-analysis were conducted in one common population defined by a given case-mix. To achieve this goal, we first standardize results of different trials over the case-mix of a target population. We then quantify the amount of heterogeneity arising from case-mix and beyond case-mix reasons by using corresponding I2 statistics and prediction intervals. These new approaches enable a better understanding of the overall heterogeneity between trial results, and can be used to support standard heterogeneity assessments in individual participant data meta-analysis practice.
评估个体参与者数据荟萃分析中病例混合异质性的影响:I2统计和预测区间的新应用
试验之间的病例组合差异是导致荟萃分析中观察到的统计异质性的一个重要因素。在本文中,我们提出了两种方法来评估如果荟萃分析中的不同试验在由给定病例组合定义的一个普通人群中进行,是否会保留重要的异质性。为了实现这一目标,我们首先对目标人群的病例组合进行不同试验的结果标准化。然后,我们通过使用相应的I2统计数据和预测区间,量化由病例组合和超出病例组合原因引起的异质性数量。这些新方法能够更好地理解试验结果之间的总体异质性,并可用于支持个体参与者数据荟萃分析实践中的标准异质性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信