The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2023-07-12 DOI:10.1007/s12043-023-02581-6
S Suresh Kumar
{"title":"The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions","authors":"S Suresh Kumar","doi":"10.1007/s12043-023-02581-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we demonstrate how Hirota’s bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg–de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"97 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12043-023-02581-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-023-02581-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we demonstrate how Hirota’s bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg–de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.

变形修正Korteweg-de Vries方程:多孤子解及其相互作用
本文证明了如何利用Hirota的双线性方法推导变形修正Korteweg-de Vries (KdV)方程的单孤子解、双孤子解和三孤子解。我们注意到,导出的孤子解依赖于时间相关函数,表明孤子解的速度不再明确地依赖于波的振幅。最后,我们用图形展示了多孤子解及其相互作用的演化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信