{"title":"MODELING STUDIES AND CODE-TO-CODE COMPARISONS FOR PRESSURE TUBE HEAVY WATER REACTOR CORES","authors":"Huiping Yan, B. Bromley, C. Dugal, A. V. Colton","doi":"10.12943/CNR.2018.00003","DOIUrl":null,"url":null,"abstract":"Preliminary, conceptual studies have been performed previously using deterministic lattice physics (WIMS-AECL) and core physics codes (RFSP) to estimate performance and safety characteristics of various thorium-based fuels and uranium-based fuels augmented by small amounts of thorium for use in pressure tube heavy-water reactors (PT-HWRs). To confirm the validity of the results, the WIMS-AECL/RFSP results are compared against predictions made with the stochastic neutron transport code MCNP. This paper describes the development of a method for setting up an MCNP core model of at PT-HWR for comparison with WIMS-AECL/RFSP results, using a core with 37-element natural uranium fuel bundles as a test case for sensitivity studies. These studies included evaluating the sensitivity of the bias of the effective neutron multiplication factor (keff), a source convergence study, uncertainties correction with multiple independent simulations, the impact of irradiation map binning methods, and the impact of reflector models. A Python-based software scripting tool was developed to automate the creation, execution, and post-processing of reactor physics data from the MCNP models. The software tool and algorithm for creating an MCNP core model using data from the WIMS-AECL and RFSP models are described in this paper. Based on the preliminary evaluations of the simulation parameters with the base model, reactor physics analyses were performed for PT-HWR cores with thorium-based fuels in a 35-element bundle type. Code-to-code results demonstrate good agreement between MCNP and RFSP, giving confidence in the method developed and its applicability to other fuels and core types.","PeriodicalId":42750,"journal":{"name":"CNL Nuclear Review","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNL Nuclear Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12943/CNR.2018.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Preliminary, conceptual studies have been performed previously using deterministic lattice physics (WIMS-AECL) and core physics codes (RFSP) to estimate performance and safety characteristics of various thorium-based fuels and uranium-based fuels augmented by small amounts of thorium for use in pressure tube heavy-water reactors (PT-HWRs). To confirm the validity of the results, the WIMS-AECL/RFSP results are compared against predictions made with the stochastic neutron transport code MCNP. This paper describes the development of a method for setting up an MCNP core model of at PT-HWR for comparison with WIMS-AECL/RFSP results, using a core with 37-element natural uranium fuel bundles as a test case for sensitivity studies. These studies included evaluating the sensitivity of the bias of the effective neutron multiplication factor (keff), a source convergence study, uncertainties correction with multiple independent simulations, the impact of irradiation map binning methods, and the impact of reflector models. A Python-based software scripting tool was developed to automate the creation, execution, and post-processing of reactor physics data from the MCNP models. The software tool and algorithm for creating an MCNP core model using data from the WIMS-AECL and RFSP models are described in this paper. Based on the preliminary evaluations of the simulation parameters with the base model, reactor physics analyses were performed for PT-HWR cores with thorium-based fuels in a 35-element bundle type. Code-to-code results demonstrate good agreement between MCNP and RFSP, giving confidence in the method developed and its applicability to other fuels and core types.