{"title":"Sampling methods and estimation of triangle count distributions in large networks","authors":"Nelson Antunes, Tianjian Guo, V. Pipiras","doi":"10.1017/nws.2021.2","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates the distributions of triangle counts per vertex and edge, as a means for network description, analysis, model building, and other tasks. The main interest is in estimating these distributions through sampling, especially for large networks. A novel sampling method tailored for the estimation analysis is proposed, with three sampling designs motivated by several network access scenarios. An estimation method based on inversion and an asymptotic method are developed to recover the entire distribution. A single method to estimate the distribution using multiple samples is also considered. Algorithms are presented to sample the network under the various access scenarios. Finally, the estimation methods on synthetic and real-world networks are evaluated in a data study.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/nws.2021.2","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2021.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract This paper investigates the distributions of triangle counts per vertex and edge, as a means for network description, analysis, model building, and other tasks. The main interest is in estimating these distributions through sampling, especially for large networks. A novel sampling method tailored for the estimation analysis is proposed, with three sampling designs motivated by several network access scenarios. An estimation method based on inversion and an asymptotic method are developed to recover the entire distribution. A single method to estimate the distribution using multiple samples is also considered. Algorithms are presented to sample the network under the various access scenarios. Finally, the estimation methods on synthetic and real-world networks are evaluated in a data study.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.