Estimates of lengths of shortest nonzero vectors in some lattices. I

IF 0.3 Q4 MATHEMATICS, APPLIED
A. S. Rybakov
{"title":"Estimates of lengths of shortest nonzero vectors in some lattices. I","authors":"A. S. Rybakov","doi":"10.1515/dma-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract In 1988, Friese et al. put forward lower estimates for the lengths of shortest nonzero vectors for “almost all” lattices of some families in the dimension 3. In 2004, the author of the present paper obtained a similar result for the dimension 4. Here we give a better estimate for the cardinality of the set of exceptional lattices for which the above estimates are not valid. In the case of dimension 4 we improve the upper estimate for an arbitrary chosen parameter that controls the accuracy of these lower estimates and for the number of exceptions. In this (first) part of the paper, we also prove some auxiliary results, which will be used in the second (main) part of the paper, in which an analogue of A. Friese et al. result will be given for dimension 5.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"207 - 218"},"PeriodicalIF":0.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In 1988, Friese et al. put forward lower estimates for the lengths of shortest nonzero vectors for “almost all” lattices of some families in the dimension 3. In 2004, the author of the present paper obtained a similar result for the dimension 4. Here we give a better estimate for the cardinality of the set of exceptional lattices for which the above estimates are not valid. In the case of dimension 4 we improve the upper estimate for an arbitrary chosen parameter that controls the accuracy of these lower estimates and for the number of exceptions. In this (first) part of the paper, we also prove some auxiliary results, which will be used in the second (main) part of the paper, in which an analogue of A. Friese et al. result will be given for dimension 5.
一些格中最短非零向量长度的估计。我
摘要1988年,Friese等人对维数为3的一些族的“几乎所有”格的最短非零向量的长度提出了较低的估计。2004年,本论文的作者在维度4上获得了类似的结果。在这里,我们对上述估计无效的异常格集的基数给出了更好的估计。在维度4的情况下,我们改进了任意选择的参数的上限估计,该参数控制了这些下限估计的准确性和异常数量。在论文的这(第一)部分中,我们还证明了一些辅助结果,这些结果将在论文的第二(主要)部分中使用,其中A.Friese等人的结果将在维度5中给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信