NUMERICAL MODELLING OF THE AUSTRALIA – ANTARCTICA CONJUGATE MARGINS USING THE GALO SYSTEM: PART 1. THE BREMER SUB-BASIN, SW AUSTRALIA

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Y. I. Galushkin, G. L. Leitchenkov, E. P. Dubinin
{"title":"NUMERICAL MODELLING OF THE AUSTRALIA – ANTARCTICA CONJUGATE MARGINS USING THE GALO SYSTEM: PART 1. THE BREMER SUB-BASIN, SW AUSTRALIA","authors":"Y. I. Galushkin,&nbsp;G. L. Leitchenkov,&nbsp;E. P. Dubinin","doi":"10.1111/jpg.12768","DOIUrl":null,"url":null,"abstract":"<p>An analysis of variations in the tectonic subsidence of the Bremer sub-basin (offshore SW Australia) since 160 Ma using the GALO numerical basin modelling programme has made it possible both to refine previous models and to estimate the intensity of stretching and thermal activation of the lithosphere. The new model explains the rapid subsidence of the sub-basin and the deposition of the synrift Bremer 1 unit during the initial rift phase in the Late Jurassic (160 to 130 Ma). This phase of extension was accompanied by high heat flows, typical of the axial zones of continental rifts, and lithospheric stretching with a β-factor of about 1.4. Between 130 and 43 Ma, the abnormally low depositional rate and the shallow water depths suggest moderate thermal activation of the mantle and the absence of extension-driven subsidence. However during the Eocene (43 to 37 Ma), the modelling suggests that another phase of intense stretching of the sub-basin lithosphere took place with β = 1.7, explaining both the subsidence and an abrupt increase in water depth from about 50–200 m to nearer 2000 m.</p><p>The high heat flows during the initial stage of rifting and thermal activation during Cenozoic extension contributed to the early generation of hydrocarbons by source rocks in the Bremer 1 unit at the base of sedimentary cover. At the present day, these source rocks are overmature. At the same time, the modelling suggests that generation of light and heavy oil in the overlying Bremer 2 and 3 units has occurred. Source rock intervals in the upper half of the Bremer 3 unit and in the overlying successions are early mature or immature and may have generated minor volumes of hydrocarbons.</p>","PeriodicalId":16748,"journal":{"name":"Journal of Petroleum Geology","volume":"43 3","pages":"323-339"},"PeriodicalIF":1.8000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jpg.12768","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpg.12768","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

An analysis of variations in the tectonic subsidence of the Bremer sub-basin (offshore SW Australia) since 160 Ma using the GALO numerical basin modelling programme has made it possible both to refine previous models and to estimate the intensity of stretching and thermal activation of the lithosphere. The new model explains the rapid subsidence of the sub-basin and the deposition of the synrift Bremer 1 unit during the initial rift phase in the Late Jurassic (160 to 130 Ma). This phase of extension was accompanied by high heat flows, typical of the axial zones of continental rifts, and lithospheric stretching with a β-factor of about 1.4. Between 130 and 43 Ma, the abnormally low depositional rate and the shallow water depths suggest moderate thermal activation of the mantle and the absence of extension-driven subsidence. However during the Eocene (43 to 37 Ma), the modelling suggests that another phase of intense stretching of the sub-basin lithosphere took place with β = 1.7, explaining both the subsidence and an abrupt increase in water depth from about 50–200 m to nearer 2000 m.

The high heat flows during the initial stage of rifting and thermal activation during Cenozoic extension contributed to the early generation of hydrocarbons by source rocks in the Bremer 1 unit at the base of sedimentary cover. At the present day, these source rocks are overmature. At the same time, the modelling suggests that generation of light and heavy oil in the overlying Bremer 2 and 3 units has occurred. Source rock intervals in the upper half of the Bremer 3 unit and in the overlying successions are early mature or immature and may have generated minor volumes of hydrocarbons.

利用galo系统的澳大利亚-南极洲共轭边缘的数值模拟。第1部分。澳大利亚西南部的布雷默盆地
使用GALO数值盆地模拟程序分析了自160 Ma以来Bremer次盆地(澳大利亚西南部近海)的构造沉降变化,使改进以前的模型和估计岩石圈拉伸和热激活的强度成为可能。新模型解释了晚侏罗世(160 ~ 130 Ma)裂谷初始阶段亚盆地的快速沉降和布雷默1单元的沉积。这一阶段的伸展伴随着高热流(典型的大陆裂谷轴向带)和岩石圈伸展(β因子约为1.4)。在130 ~ 43 Ma之间,异常低的沉积速率和较浅的水深表明地幔有适度的热活化,没有伸展驱动的沉降。然而,在始新世(43 ~ 37 Ma),该模型表明,在β = 1.7的情况下,发生了另一个强烈的盆地岩石圈拉伸阶段,这解释了下沉和水深从50 ~ 200米突然增加到近2000米的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Petroleum Geology
Journal of Petroleum Geology 地学-地球科学综合
CiteScore
3.40
自引率
11.10%
发文量
22
审稿时长
6 months
期刊介绍: Journal of Petroleum Geology is a quarterly journal devoted to the geology of oil and natural gas. Editorial preference is given to original papers on oilfield regions of the world outside North America and on topics of general application in petroleum exploration and development operations, including geochemical and geophysical studies, basin modelling and reservoir evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信