{"title":"Paradigm Shift from Telemedicine to Autonomous Human Health and Performance for Long-Duration Space Missions","authors":"A. Popov, W. Fink, A. Hess","doi":"10.36001/ijphm.2019.v10i3.2627","DOIUrl":null,"url":null,"abstract":"This paper discusses a Prognostics and Health Management [PHM]-based approach to implementing Human Health & Performance [HH&P] technologies. Targeted specifically are NASA Autonomous Medical Decision and Integrated Biomedical Informatics of Human Health, Life Support, and Habitation Systems in Technology Area 06 [TA 06] of NASA integrated technology roadmap [April 2012]. The proposed PHM-based implementation is to bridge PHM, an engineering discipline, to the HH&P technology domain to mitigate space travel risks by focusing on efforts to reduce countermeasure mass and volume, and drive down risks to an acceptable level. NASA Autonomous Medical Decision technology is based on wireless handheld devices and is a result of a necessary paradigm shift from telemedicine to HH&P autonomy. The Integrated Biomedical Informatics technology is based on Crew Electronic Health Records [CEHR], equipped with a predictive diagnostics capability developed for use by crew members rather than by healthcare professionals. This paper further explores the proposed PHM-based solutions for crew health maintenance in terms of predictive diagnostics to provide early and actionable real-time warnings to each crew member about health-related risks and impending health problems that otherwise might go undetected. The paper also discusses the paradigm’s hypothesis and its innovation methodology, as implemented with computed biomarkers. The suggested paradigm is to be validated on the International Space Station [ISS] to ensure that crew autonomy in terms of the inherent predictive capability and two-fault-tolerance of the methodology become the dominant design drivers in sustaining crew health and performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2019.v10i3.2627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
This paper discusses a Prognostics and Health Management [PHM]-based approach to implementing Human Health & Performance [HH&P] technologies. Targeted specifically are NASA Autonomous Medical Decision and Integrated Biomedical Informatics of Human Health, Life Support, and Habitation Systems in Technology Area 06 [TA 06] of NASA integrated technology roadmap [April 2012]. The proposed PHM-based implementation is to bridge PHM, an engineering discipline, to the HH&P technology domain to mitigate space travel risks by focusing on efforts to reduce countermeasure mass and volume, and drive down risks to an acceptable level. NASA Autonomous Medical Decision technology is based on wireless handheld devices and is a result of a necessary paradigm shift from telemedicine to HH&P autonomy. The Integrated Biomedical Informatics technology is based on Crew Electronic Health Records [CEHR], equipped with a predictive diagnostics capability developed for use by crew members rather than by healthcare professionals. This paper further explores the proposed PHM-based solutions for crew health maintenance in terms of predictive diagnostics to provide early and actionable real-time warnings to each crew member about health-related risks and impending health problems that otherwise might go undetected. The paper also discusses the paradigm’s hypothesis and its innovation methodology, as implemented with computed biomarkers. The suggested paradigm is to be validated on the International Space Station [ISS] to ensure that crew autonomy in terms of the inherent predictive capability and two-fault-tolerance of the methodology become the dominant design drivers in sustaining crew health and performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.