Utilization of ultraviolet-visible spectrophotometry in conjunction with wrapper method and correlated component regression for nitrite prediction outside the Beer–Lambert domain
Meryem NINI, El Mati Khoumri, Omar Ait Layachi, Mohamed Nohair
{"title":"Utilization of ultraviolet-visible spectrophotometry in conjunction with wrapper method and correlated component regression for nitrite prediction outside the Beer–Lambert domain","authors":"Meryem NINI, El Mati Khoumri, Omar Ait Layachi, Mohamed Nohair","doi":"10.1002/cem.3502","DOIUrl":null,"url":null,"abstract":"<p>The determination of nitrite concentration is crucial due to its toxicity. A novel model has been developed to accurately determine nitrite concentration within the non-linear range, utilizing the Zambelli method. Previously, techniques for measure nitrite concentration were primarily restricted to the linear range. This new method employs UV-Visible absorption spectra and correlated component regression (CCR) to determine nitrite concentration within the range of 0.27–11.34 ppm. A wavelength selection strategy in conjunction with partial least squares (PLS) was implemented prior to applying CCR. The spectral data underwent pre-processing using standard normal variant (SNV) and Savitzky Golay (SG) techniques, and a backward selection (BS) strategy with PLS was applied to select wavelengths. The 15 most sensitive wavelengths, determined through the RMSE<sub>CV</sub> criterion, were utilized to create a PLS model within the range 377–497 nm, resulting in a model with <i>R</i><sup>2</sup><sub>C</sub> = 0.9999 and <i>R</i><sup>2</sup><sub>CV</sub> = 0.9999, RMSE<sub>C</sub> = 0.006, RMSE<sub>CV</sub> = 0.027. A CCR model was then established using the 15selected wavelengths and nitrite concentration. The results yielded strong correlation between predicted and measured nitrite values with <i>R</i><sup>2</sup><sub>C</sub> = 0.9996, RMSE<sub>C</sub> = 4.7491 E-15, RMSE<sub>CV</sub> = 0.0004, and MAPE = 0.68%. The method has been validated through an accuracy profile, which demonstrates that 80% of future results will fall within the 10% acceptability limit within the validation range of 1.30–8.83 mg/L.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3502","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0
Abstract
The determination of nitrite concentration is crucial due to its toxicity. A novel model has been developed to accurately determine nitrite concentration within the non-linear range, utilizing the Zambelli method. Previously, techniques for measure nitrite concentration were primarily restricted to the linear range. This new method employs UV-Visible absorption spectra and correlated component regression (CCR) to determine nitrite concentration within the range of 0.27–11.34 ppm. A wavelength selection strategy in conjunction with partial least squares (PLS) was implemented prior to applying CCR. The spectral data underwent pre-processing using standard normal variant (SNV) and Savitzky Golay (SG) techniques, and a backward selection (BS) strategy with PLS was applied to select wavelengths. The 15 most sensitive wavelengths, determined through the RMSECV criterion, were utilized to create a PLS model within the range 377–497 nm, resulting in a model with R2C = 0.9999 and R2CV = 0.9999, RMSEC = 0.006, RMSECV = 0.027. A CCR model was then established using the 15selected wavelengths and nitrite concentration. The results yielded strong correlation between predicted and measured nitrite values with R2C = 0.9996, RMSEC = 4.7491 E-15, RMSECV = 0.0004, and MAPE = 0.68%. The method has been validated through an accuracy profile, which demonstrates that 80% of future results will fall within the 10% acceptability limit within the validation range of 1.30–8.83 mg/L.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.