Gaofei Yin, A. Verger, Adrià Descals, I. Filella, J. Peñuelas
{"title":"A Broadband Green-Red Vegetation Index for Monitoring Gross Primary Production Phenology","authors":"Gaofei Yin, A. Verger, Adrià Descals, I. Filella, J. Peñuelas","doi":"10.34133/2022/9764982","DOIUrl":null,"url":null,"abstract":"The chlorophyll/carotenoid index (CCI) is increasingly used for remotely tracking the phenology of photosynthesis. However, CCI is restricted to few satellites incorporating the 531 nm band. This study reveals that the Moderate Resolution Imaging Spectroradiometer (MODIS) broadband green reflectance (band 4) is significantly correlated with this xanthophyll-sensitive narrowband (band 11) (R2=0.98,p<0.001), and consequently, the broadband green-red vegetation index GRVI—computed with MODIS band 1 and band 4—is significantly correlated with CCI—computed with MODIS band 1 and band 11 (R2=0.97,p<0.001). GRVI and CCI performed similarly in extracting phenological metrics of the dates of the start and end of the season (EOS) when evaluated with gross primary production (GPP) measurements from eddy covariance towers. For EOS extraction of evergreen needleleaf forest, GRVI even overperformed solar-induced chlorophyll fluorescence which is seen as a direct proxy of plant photosynthesis. This study opens the door for GPP and photosynthetic phenology monitoring from a wide set of sensors with broadbands in the green and red spectral regions.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2022/9764982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The chlorophyll/carotenoid index (CCI) is increasingly used for remotely tracking the phenology of photosynthesis. However, CCI is restricted to few satellites incorporating the 531 nm band. This study reveals that the Moderate Resolution Imaging Spectroradiometer (MODIS) broadband green reflectance (band 4) is significantly correlated with this xanthophyll-sensitive narrowband (band 11) (R2=0.98,p<0.001), and consequently, the broadband green-red vegetation index GRVI—computed with MODIS band 1 and band 4—is significantly correlated with CCI—computed with MODIS band 1 and band 11 (R2=0.97,p<0.001). GRVI and CCI performed similarly in extracting phenological metrics of the dates of the start and end of the season (EOS) when evaluated with gross primary production (GPP) measurements from eddy covariance towers. For EOS extraction of evergreen needleleaf forest, GRVI even overperformed solar-induced chlorophyll fluorescence which is seen as a direct proxy of plant photosynthesis. This study opens the door for GPP and photosynthetic phenology monitoring from a wide set of sensors with broadbands in the green and red spectral regions.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.