On the Convergence of the Quasi-Periodic Approximations on a Finite Interval

IF 0.5 Q3 MATHEMATICS
A. Poghosyan, Lusine Poghosyan, R. Barkhudaryan
{"title":"On the Convergence of the Quasi-Periodic Approximations on a Finite Interval","authors":"A. Poghosyan, Lusine Poghosyan, R. Barkhudaryan","doi":"10.52737/18291163-2021.13.10-1-44","DOIUrl":null,"url":null,"abstract":"We investigate the convergence of the quasi-periodic approximations in different frameworks and reveal exact asymptotic estimates of the corresponding errors. The estimates facilitate a fair comparison of the quasi-periodic approximations to other classical well-known approaches. We consider a special realization of the approximations by the inverse of the Vandermonde matrix, which makes it possible to prove the existence of the corresponding implementations, derive explicit formulas and explore convergence properties. We also show the application of polynomial corrections for the convergence acceleration of the quasi-periodic approximations. Numerical experiments reveal the auto-correction phenomenon related to the polynomial corrections so that utilization of approximate derivatives surprisingly results in better convergence compared to the expansions with the exact ones.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2021.13.10-1-44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the convergence of the quasi-periodic approximations in different frameworks and reveal exact asymptotic estimates of the corresponding errors. The estimates facilitate a fair comparison of the quasi-periodic approximations to other classical well-known approaches. We consider a special realization of the approximations by the inverse of the Vandermonde matrix, which makes it possible to prove the existence of the corresponding implementations, derive explicit formulas and explore convergence properties. We also show the application of polynomial corrections for the convergence acceleration of the quasi-periodic approximations. Numerical experiments reveal the auto-correction phenomenon related to the polynomial corrections so that utilization of approximate derivatives surprisingly results in better convergence compared to the expansions with the exact ones.
有限区间上拟周期逼近的收敛性
研究了拟周期逼近在不同框架下的收敛性,并给出了相应误差的精确渐近估计。这些估计有助于将拟周期近似与其他经典的众所周知的方法进行公平的比较。我们考虑了Vandermonde矩阵逆逼近的一种特殊实现,从而证明了相应实现的存在性,推导了显式公式,并探讨了收敛性。我们还展示了多项式修正在拟周期逼近收敛加速中的应用。数值实验揭示了与多项式修正相关的自动修正现象,因此使用近似导数比使用精确导数展开式具有更好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信