On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes

IF 0.5 4区 数学
Somnath Basu, Prateep Chakraborty
{"title":"On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes","authors":"Somnath Basu,&nbsp;Prateep Chakraborty","doi":"10.1007/s40062-019-00244-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the mod 2 cohomology ring of the Grasmannian <span>\\(\\widetilde{G}_{n,3}\\)</span> of oriented 3-planes in <span>\\({\\mathbb {R}}^n\\)</span>. We determine the degrees of the indecomposable elements in the cohomology ring. We also obtain an almost complete description of the cohomology ring. This description allows us to provide lower and upper bounds on the cup length of <span>\\(\\widetilde{G}_{n,3}\\)</span>. As another application, we show that the upper characteristic rank of <span>\\(\\widetilde{G}_{n,3}\\)</span> equals the characteristic rank of <span>\\(\\widetilde{\\gamma }_{n,3}\\)</span>, the oriented tautological bundle over <span>\\(\\widetilde{G}_{n,3}\\)</span> if <i>n</i> is at least 8.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 1","pages":"27 - 60"},"PeriodicalIF":0.5000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00244-1","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00244-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we study the mod 2 cohomology ring of the Grasmannian \(\widetilde{G}_{n,3}\) of oriented 3-planes in \({\mathbb {R}}^n\). We determine the degrees of the indecomposable elements in the cohomology ring. We also obtain an almost complete description of the cohomology ring. This description allows us to provide lower and upper bounds on the cup length of \(\widetilde{G}_{n,3}\). As another application, we show that the upper characteristic rank of \(\widetilde{G}_{n,3}\) equals the characteristic rank of \(\widetilde{\gamma }_{n,3}\), the oriented tautological bundle over \(\widetilde{G}_{n,3}\) if n is at least 8.

有向3平面上同调环及Grassmannian的上特征秩
本文研究了\({\mathbb {R}}^n\)中有向3平面的Grasmannian \(\widetilde{G}_{n,3}\)的模2上同环。我们确定了上同环中不可分解元素的度。我们也得到了上同环的一个几乎完整的描述。这个描述允许我们提供\(\widetilde{G}_{n,3}\)杯长的下界和上界。作为另一个应用,我们证明了当n≥8时,\(\widetilde{G}_{n,3}\)的上特征秩等于\(\widetilde{G}_{n,3}\)上的定向重言束\(\widetilde{\gamma }_{n,3}\)的特征秩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信