{"title":"Adaptive Turbo Equalization for Probabilistic Constellation Shaped Underwater Acoustic Communications","authors":"Xisheng Wu, Yanbo Wu, Min Zhu, Dong Li","doi":"10.15918/J.JBIT1004-0579.2021.030","DOIUrl":null,"url":null,"abstract":"To increase the spectral efficiency of the underwater acoustic (UWA) communication system, the high order quadrature amplitude modulations (QAM) are deployed. Recently, the probabilistic constellation shaping (PCS) has been a novel technology to improve the spectral efficiency. The PCS with high-order QAM is introduced into the UWA communication system. A turbo equalization scheme with PCS was proposed to cancel the severe inter-symbol interference (ISI). The non-zero a priori information is available for the equalizer and decoder before turbo iteration. A priori hard decision approach is proposed to improve the detection performance and the equalizer convergence speed. At the initial turbo iteration, the relation between the a priori information and the probability of the amplitude of 16QAM symbols in one dimension is given. The simulation results verified the efficiency of the proposed method, and compared to the uniform distribution (UD), the PCS-16QAM had a significant improvement of the bit error rate (BER) performance with PCS-adaptive turbo equalization (PCS-ATEQ). The UWA communication experiments further verified the performance superiority of the proposed method.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"280-289"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.2021.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
To increase the spectral efficiency of the underwater acoustic (UWA) communication system, the high order quadrature amplitude modulations (QAM) are deployed. Recently, the probabilistic constellation shaping (PCS) has been a novel technology to improve the spectral efficiency. The PCS with high-order QAM is introduced into the UWA communication system. A turbo equalization scheme with PCS was proposed to cancel the severe inter-symbol interference (ISI). The non-zero a priori information is available for the equalizer and decoder before turbo iteration. A priori hard decision approach is proposed to improve the detection performance and the equalizer convergence speed. At the initial turbo iteration, the relation between the a priori information and the probability of the amplitude of 16QAM symbols in one dimension is given. The simulation results verified the efficiency of the proposed method, and compared to the uniform distribution (UD), the PCS-16QAM had a significant improvement of the bit error rate (BER) performance with PCS-adaptive turbo equalization (PCS-ATEQ). The UWA communication experiments further verified the performance superiority of the proposed method.