Random projection tree similarity metric for SpectralNet

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2023-03-01 DOI:10.1016/j.array.2022.100274
Mashaan Alshammari , John Stavrakakis , Adel F. Ahmed , Masahiro Takatsuka
{"title":"Random projection tree similarity metric for SpectralNet","authors":"Mashaan Alshammari ,&nbsp;John Stavrakakis ,&nbsp;Adel F. Ahmed ,&nbsp;Masahiro Takatsuka","doi":"10.1016/j.array.2022.100274","DOIUrl":null,"url":null,"abstract":"<div><p>SpectralNet is a graph clustering method that uses neural network to find an embedding that separates the data. So far it was only used with <span><math><mi>k</mi></math></span>-nn graphs, which are usually constructed using a distance metric (e.g., Euclidean distance). <span><math><mi>k</mi></math></span>-nn graphs restrict the points to have a fixed number of neighbors regardless of the local statistics around them. We proposed a new SpectralNet similarity metric based on random projection trees (rpTrees). Our experiments revealed that SpectralNet produces better clustering accuracy using rpTree similarity metric compared to <span><math><mi>k</mi></math></span>-nn graph with a distance metric. Also, we found out that rpTree parameters do not affect the clustering accuracy. These parameters include the leaf size and the selection of projection direction. It is computationally efficient to keep the leaf size in order of <span><math><mrow><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, and project the points onto a random direction instead of trying to find the direction with the maximum dispersion.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005622001072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

SpectralNet is a graph clustering method that uses neural network to find an embedding that separates the data. So far it was only used with k-nn graphs, which are usually constructed using a distance metric (e.g., Euclidean distance). k-nn graphs restrict the points to have a fixed number of neighbors regardless of the local statistics around them. We proposed a new SpectralNet similarity metric based on random projection trees (rpTrees). Our experiments revealed that SpectralNet produces better clustering accuracy using rpTree similarity metric compared to k-nn graph with a distance metric. Also, we found out that rpTree parameters do not affect the clustering accuracy. These parameters include the leaf size and the selection of projection direction. It is computationally efficient to keep the leaf size in order of log(n), and project the points onto a random direction instead of trying to find the direction with the maximum dispersion.

SpectralNet的随机投影树相似性度量
SpectralNet是一种利用神经网络寻找分离数据的嵌入的图聚类方法。到目前为止,它只用于k-nn图,这些图通常使用距离度量(例如欧几里得距离)来构建。K-nn图将点限制为具有固定数量的邻居,而不考虑它们周围的局部统计数据。我们提出了一种新的基于随机投影树(rpTrees)的SpectralNet相似性度量。我们的实验表明,与使用距离度量的k-nn图相比,使用rpTree相似性度量的SpectralNet产生了更好的聚类精度。此外,我们发现rpTree参数不影响聚类精度。这些参数包括叶片大小和投影方向的选择。保持叶子大小为log(n)的数量级,并将点投射到随机方向上,而不是试图找到具有最大分散的方向,这在计算上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信