V. Gerbreders, M. Krasovska, I. Mihailova, Ē. Sļedevskis, A. Ogurcovs, E. Tamanis, V. Auksmuksts, A. Bulanovs, V. Mizers
{"title":"Morphology Influence on Wettability and Wetting Dynamics of ZnO Nanostructure Arrays","authors":"V. Gerbreders, M. Krasovska, I. Mihailova, Ē. Sļedevskis, A. Ogurcovs, E. Tamanis, V. Auksmuksts, A. Bulanovs, V. Mizers","doi":"10.2478/lpts-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract Changes in nanostructure morphology and size may result in very different surface wettability. In this research, the impact of different morphological parameters on the wetting dynamics of ZnO nanostructured layers is studied. Six different morphologies are chosen to determine the specific wetting processes of ZnO nanostructures: nanoneedles, small diameter rods, large diameter rods, nanotubes, nanoplates, and plain thin films. Wetting dynamics is investigated using conventional sessile drop technique and a novel approach based on electrochemical impedance spectroscopy. The results show that the surface of nanostructured ZnO thin films exhibits both hydrophilic and hydrophobic wetting behaviour, depending on nanostructure form, size, and orientation. ZnO nanostructure arrays are a promising platform for electrochemical and optical sensing in aqueous solutions. The full and effective use of the sensor working surface can be ensured only under the condition of complete wetting of the nanostructured layer. Therefore, it is important to take into account the peculiarities of the wetting process of a specific morphology of nanostructures.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"59 1","pages":"30 - 43"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Changes in nanostructure morphology and size may result in very different surface wettability. In this research, the impact of different morphological parameters on the wetting dynamics of ZnO nanostructured layers is studied. Six different morphologies are chosen to determine the specific wetting processes of ZnO nanostructures: nanoneedles, small diameter rods, large diameter rods, nanotubes, nanoplates, and plain thin films. Wetting dynamics is investigated using conventional sessile drop technique and a novel approach based on electrochemical impedance spectroscopy. The results show that the surface of nanostructured ZnO thin films exhibits both hydrophilic and hydrophobic wetting behaviour, depending on nanostructure form, size, and orientation. ZnO nanostructure arrays are a promising platform for electrochemical and optical sensing in aqueous solutions. The full and effective use of the sensor working surface can be ensured only under the condition of complete wetting of the nanostructured layer. Therefore, it is important to take into account the peculiarities of the wetting process of a specific morphology of nanostructures.
期刊介绍:
Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.