Quasi-doubling of self-similar measures with overlaps

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
K. Hare, K. Hare, Sascha Troscheit
{"title":"Quasi-doubling of self-similar measures with overlaps","authors":"K. Hare, K. Hare, Sascha Troscheit","doi":"10.4171/jfg/91","DOIUrl":null,"url":null,"abstract":"The Assouad and quasi-Assouad dimensions of a metric space provide information about the extreme local geometric nature of the set. The Assouad dimension of a set has a measure theoretic analogue, which is also known as the upper regularity dimension. One reason for the interest in this notion is that a measure has finite Assouad dimension if and only if it is doubling. \nMotivated by recent progress on both the Assouad dimension of measures that satisfy a strong separation condition and the quasi-Assouad dimension of metric spaces, we introduce the notion of the quasi-Assouad dimension of a measure. As with sets, the quasi-Assouad dimension of a measure is dominated by its Assouad dimension. It dominates both the quasi-Assouad dimension of its support and the supremal local dimension of the measure, with strict inequalities possible in all cases. \nOur main focus is on self-similar measures in $\\mathbb{R}$ whose support is an interval and which may have `overlaps'. For measures that satisfy a weaker condition than the weak separation condition we prove that finite quasi-Assouad dimension is equivalent to quasi-doubling of the measure, a strictly less restrictive property than doubling. Further, we exhibit a large class of such measures for which the quasi-Assouad dimension coincides with the maximum of the local dimension at the endpoints of the support. This class includes all regular, equicontractive self-similar measures satisfying the weak separation condition, such as convolutions of uniform Cantor measures with integer ratio of dissection. Other properties of this dimension are also established and many examples are given.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/91","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

Abstract

The Assouad and quasi-Assouad dimensions of a metric space provide information about the extreme local geometric nature of the set. The Assouad dimension of a set has a measure theoretic analogue, which is also known as the upper regularity dimension. One reason for the interest in this notion is that a measure has finite Assouad dimension if and only if it is doubling. Motivated by recent progress on both the Assouad dimension of measures that satisfy a strong separation condition and the quasi-Assouad dimension of metric spaces, we introduce the notion of the quasi-Assouad dimension of a measure. As with sets, the quasi-Assouad dimension of a measure is dominated by its Assouad dimension. It dominates both the quasi-Assouad dimension of its support and the supremal local dimension of the measure, with strict inequalities possible in all cases. Our main focus is on self-similar measures in $\mathbb{R}$ whose support is an interval and which may have `overlaps'. For measures that satisfy a weaker condition than the weak separation condition we prove that finite quasi-Assouad dimension is equivalent to quasi-doubling of the measure, a strictly less restrictive property than doubling. Further, we exhibit a large class of such measures for which the quasi-Assouad dimension coincides with the maximum of the local dimension at the endpoints of the support. This class includes all regular, equicontractive self-similar measures satisfying the weak separation condition, such as convolutions of uniform Cantor measures with integer ratio of dissection. Other properties of this dimension are also established and many examples are given.
具有重叠的自相似测度的拟加倍
度量空间的Assouad和拟Assouad维数提供了关于集合的极端局部几何性质的信息。集合的Assouad维数在测度论上有类似的性质,也被称为上正则维数。人们对这个概念感兴趣的一个原因是,一个测度具有有限的Assouad维数,当且仅当它是二重的。受满足强分离条件的测度的Assouad维数和度量空间的拟Assouad维的最新进展的启发,我们引入了测度的拟Assauad维数的概念。与集合一样,测度的拟Assouad维数由其Assouad维度支配。它在其支持的拟Assouad维度和测度的上局部维度上都占主导地位,在所有情况下都可能存在严格的不等式。我们的主要关注点是$\mathbb{R}$中的自相似度量,其支持度是一个区间,可能具有“重叠”。对于满足弱分离条件的测度,我们证明了有限拟Assouad维数等价于测度的拟加倍,这是一个严格小于加倍的限制性质。此外,我们展示了一大类这样的度量,其中准Assouad维度与支撑端点处的局部维度的最大值一致。该类包括所有满足弱分离条件的正则、等收缩自相似测度,如具有整数分离比的一致Cantor测度的卷积。还建立了该维的其他性质,并给出了许多例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信