Toric, U(2), and LeBrun metrics

IF 0.5 Q3 MATHEMATICS
Brian Weber
{"title":"Toric, U(2), and LeBrun metrics","authors":"Brian Weber","doi":"10.4067/s0719-06462020000300395","DOIUrl":null,"url":null,"abstract":"The LeBrun ansatz was designed for scalar-flat K¨ahler metrics with a continuous symmetry; here we show it is generalizable to much broader classes of metrics with a symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun ansatz form, the conditions under which its natural complex structure is integrable, and the conditions that produce a metric that is K¨ahler, scalar-flat, or extremal K¨ahler. Second, toric K¨ahler metrics (such as the generalized Taub-NUTs) and U (2)-invariant metrics (such as the Fubini-Study or Page metrics) are certainly expressible in the LeBrun ansatz. We give general formulas for such transitions. We close the paper with examples, and find expressions for two examples—the exceptional half-plane metric and the Page metric—in terms of the LeBrun ansatz. segundo lugar, m´etricas t´oricas K¨ahler (tales como las Taub-NUT generalizadas) y m´etricas U (2)-invariantes (tales como la m´etrica de Fubini-Study o la de Page) son ciertamente expresables en el ansatz de LeBrun. Damos f´ormulas generales para tales transiciones. Concluimos el art´ıculo con ejemplos, y encontramos expresiones para dos ejemplos—la m´etrica excep-cional del semiplano y la m´etrica de Page—en t´erminos del ansatz de LeBrun.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462020000300395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The LeBrun ansatz was designed for scalar-flat K¨ahler metrics with a continuous symmetry; here we show it is generalizable to much broader classes of metrics with a symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun ansatz form, the conditions under which its natural complex structure is integrable, and the conditions that produce a metric that is K¨ahler, scalar-flat, or extremal K¨ahler. Second, toric K¨ahler metrics (such as the generalized Taub-NUTs) and U (2)-invariant metrics (such as the Fubini-Study or Page metrics) are certainly expressible in the LeBrun ansatz. We give general formulas for such transitions. We close the paper with examples, and find expressions for two examples—the exceptional half-plane metric and the Page metric—in terms of the LeBrun ansatz. segundo lugar, m´etricas t´oricas K¨ahler (tales como las Taub-NUT generalizadas) y m´etricas U (2)-invariantes (tales como la m´etrica de Fubini-Study o la de Page) son ciertamente expresables en el ansatz de LeBrun. Damos f´ormulas generales para tales transiciones. Concluimos el art´ıculo con ejemplos, y encontramos expresiones para dos ejemplos—la m´etrica excep-cional del semiplano y la m´etrica de Page—en t´erminos del ansatz de LeBrun.
Toric、U(2)和LeBrun度量
LeBrun变换是为具有连续对称性的K¨ahler度量的标量函数设计的;在这里,我们展示了它可以推广到更广泛的具有对称性的度量类。我们陈述了一个度量(局部)可以用LeBrun ansatz形式表示的条件,它的自然复结构是可积的条件,以及产生一个度量为K¨ahler、标量-flat或极值K¨ahler。其次,复曲面K–ahler度量(如广义Taub NUTs)和U(2)-不变度量(如Fubini研究或Page度量)肯定可以在LeBrun ansatz中表达。我们给出了这种转换的一般公式。我们用例子结束了这篇论文,并根据LeBrun ansatz定义了两个例子的表达式——特殊的半平面度量和Page度量。segundo-lugar,m´etrias t´oricas K¨ahler(Taub NUT的一般化故事)和m´tricas U(2)-不变量(Fubini研究的故事)是LeBrun的一个例子。Damos f’ormulas generales para tales transciones。结论是,在LeBrun的最后期限内,对员工的表现进行了总结——半计划和页面的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信