Limestone-Calcined Clay (LC2) as a supplementary cementitious material for concrete

Q2 Engineering
A. S. Basavaraj, Hareesh Muni, Yuvaraj Dhandapani, R. Gettu, M. Santhanam
{"title":"Limestone-Calcined Clay (LC2) as a supplementary cementitious material for concrete","authors":"A. S. Basavaraj, Hareesh Muni, Yuvaraj Dhandapani, R. Gettu, M. Santhanam","doi":"10.21809/rilemtechlett.2023.172","DOIUrl":null,"url":null,"abstract":"In this work, limestone-calcined clay (LC2) is studied as an alternative supplementary cementitious material (SCM), combining two widely available resources – calcinated kaolinitic clay and limestone, to partially substitute portland clinker. The primary goal is to assess the potential of LC2 to produce moderate to high strength concretes with design compressive strengths of 20 to 50 MPa. For this purpose, 27 mixes with LC2 were prepared with a range of binder contents and water-binder ratios, and the performance was benchmarked against those of mixes having fly ash (PFA). In addition to the quantification of strength and concrete resistivity, life cycle assessment was performed for the concretes considering a typical situation in India. The efficiency of concretes made with LC2, PFA and ordinary portland cement (OPC) was analyzed using the energy intensity index (eics) and apathy index (A-index) as sustainability indicators. This framework establishes the sustainability potential of the LC2 with insights on the influence of strength on the indicators. It is concluded that the LC2 concretes with 45% replacement level, w/b≤0.45 and binder content lower than 400 kg/m3 possess the highest sustainability potential, among the concretes studied here.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/rilemtechlett.2023.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, limestone-calcined clay (LC2) is studied as an alternative supplementary cementitious material (SCM), combining two widely available resources – calcinated kaolinitic clay and limestone, to partially substitute portland clinker. The primary goal is to assess the potential of LC2 to produce moderate to high strength concretes with design compressive strengths of 20 to 50 MPa. For this purpose, 27 mixes with LC2 were prepared with a range of binder contents and water-binder ratios, and the performance was benchmarked against those of mixes having fly ash (PFA). In addition to the quantification of strength and concrete resistivity, life cycle assessment was performed for the concretes considering a typical situation in India. The efficiency of concretes made with LC2, PFA and ordinary portland cement (OPC) was analyzed using the energy intensity index (eics) and apathy index (A-index) as sustainability indicators. This framework establishes the sustainability potential of the LC2 with insights on the influence of strength on the indicators. It is concluded that the LC2 concretes with 45% replacement level, w/b≤0.45 and binder content lower than 400 kg/m3 possess the highest sustainability potential, among the concretes studied here.
石灰石煅烧粘土(LC2)作为混凝土的补充胶凝材料
在这项工作中,石灰石-煅烧粘土(LC2)研究作为一种替代补充胶凝材料(SCM),结合两种广泛使用的资源-煅烧高岭石粘土和石灰石,部分替代波特兰熟料。主要目标是评估LC2生产设计抗压强度为20至50兆帕的中高强度混凝土的潜力。为此,在一定范围的粘结剂含量和水胶比下,制备了27种LC2混合料,并与掺有粉煤灰(PFA)的混合料进行了性能对比。除了强度和混凝土电阻率的量化外,考虑到印度的典型情况,对混凝土进行了生命周期评估。以能量强度指数(eics)和冷漠指数(A-index)作为可持续性指标,对LC2、PFA和普通硅酸盐水泥(OPC)配制混凝土的效率进行了分析。该框架确定了LC2的可持续性潜力,并深入了解了实力对指标的影响。结果表明,在本研究的混凝土中,替换率为45%、w/b≤0.45、粘结剂含量低于400 kg/m3的LC2混凝土具有最高的可持续发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信