Stochastic Models for Pricing Weather Derivatives using Constant Risk Premium

IF 0.1 Q4 STATISTICS & PROBABILITY
Jeffrey Pai, N. Ravishanker
{"title":"Stochastic Models for Pricing Weather Derivatives using Constant Risk Premium","authors":"Jeffrey Pai, N. Ravishanker","doi":"10.29252/JIRSS.17.2.4","DOIUrl":null,"url":null,"abstract":". Pricing weather derivatives is becoming increasingly useful, especially in developing economies. We describe a statistical model based approach for pricing weather derivatives by modeling and forecasting daily average temperature data which exhibits long-range dependence. We pre-process the temperature data by filtering for seasonality and volatility and fit autoregressive fractionally integrated moving average (ARFIMA) models, employing the preconditioned conjugate gradient (PCG) algorithm for fast computation of the likelihood function. We illustrate our approach using daily temperature data from 1970 to 2008 for cities traded on the Chicago Mercantile Exchange (CME), which we employ for pricing degree days futures contracts. We compare the statistical approach with traditional burn analysis using a simple additive risk loading principle for pricing, where the risk premium is estimated by the method of least squares using data on observed prices and the corresponding estimate of prices from the best model we fit to the temperature data.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JIRSS.17.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

. Pricing weather derivatives is becoming increasingly useful, especially in developing economies. We describe a statistical model based approach for pricing weather derivatives by modeling and forecasting daily average temperature data which exhibits long-range dependence. We pre-process the temperature data by filtering for seasonality and volatility and fit autoregressive fractionally integrated moving average (ARFIMA) models, employing the preconditioned conjugate gradient (PCG) algorithm for fast computation of the likelihood function. We illustrate our approach using daily temperature data from 1970 to 2008 for cities traded on the Chicago Mercantile Exchange (CME), which we employ for pricing degree days futures contracts. We compare the statistical approach with traditional burn analysis using a simple additive risk loading principle for pricing, where the risk premium is estimated by the method of least squares using data on observed prices and the corresponding estimate of prices from the best model we fit to the temperature data.
使用恒定风险溢价的天气衍生品定价随机模型
.天气衍生品的定价越来越有用,尤其是在发展中经济体。我们描述了一种基于统计模型的方法,通过对表现出长期依赖性的日均温度数据进行建模和预测来为天气衍生品定价。我们通过过滤季节性和波动性来预处理温度数据,并建立自回归分数积分移动平均(ARFIMA)模型,采用预条件共轭梯度(PCG)算法快速计算似然函数。我们使用芝加哥商品交易所(CME)交易城市1970年至2008年的每日温度数据来说明我们的方法,我们使用该数据来定价学位日期货合约。我们将统计方法与传统的燃烧分析进行了比较,使用简单的加性风险加载原理进行定价,其中风险溢价是通过最小二乘法估计的,使用的是观察到的价格数据以及我们根据温度数据建立的最佳模型的相应价格估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信