Performance evaluation of a novel synchronously interdigitated/winded lithium-ion battery configuration enabled by 3D printing through numerical simulations
Yide Li, Jie Li, Zhiyuan Liu, Zhangwei Chen, Changyong Liu
{"title":"Performance evaluation of a novel synchronously interdigitated/winded lithium-ion battery configuration enabled by 3D printing through numerical simulations","authors":"Yide Li, Jie Li, Zhiyuan Liu, Zhangwei Chen, Changyong Liu","doi":"10.1088/2515-7655/acdf1d","DOIUrl":null,"url":null,"abstract":"Thick electrodes with higher energy density are highly desirable for lithium-ion batteries (LIBs). However, the sluggish transport of Li-ions in thick electrodes is a critical challenge. In this study, a novel synchronously interdigitated/winded battery configuration enabled by 3D printing is proposed. The cathode, separator, and anode are synchronously interdigitated in the core and synchronously winded in the outer-rings to form an integrated full battery. With this novel battery configuration, Li-ions can transport between neighboring cathode and anode, thereby significantly reduce the transport distance of Li-ions, and improve the electrochemical reaction kinetics. To evaluate the electrochemical performance of this battery configuration, this study investigates the effects of various parameters including the electronic conductivity, electrode porosity, electrode line width, separator thickness, and number of winded outer-rings on the electrochemical performance through numerical simulations. Results showed that electronic conductivity is the most crucial factor in determining the electrochemical performance. In combination with multi-material 3D printing, the battery configuration proposed in this study may be utilized to build LIBs with higher energy density.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/acdf1d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Thick electrodes with higher energy density are highly desirable for lithium-ion batteries (LIBs). However, the sluggish transport of Li-ions in thick electrodes is a critical challenge. In this study, a novel synchronously interdigitated/winded battery configuration enabled by 3D printing is proposed. The cathode, separator, and anode are synchronously interdigitated in the core and synchronously winded in the outer-rings to form an integrated full battery. With this novel battery configuration, Li-ions can transport between neighboring cathode and anode, thereby significantly reduce the transport distance of Li-ions, and improve the electrochemical reaction kinetics. To evaluate the electrochemical performance of this battery configuration, this study investigates the effects of various parameters including the electronic conductivity, electrode porosity, electrode line width, separator thickness, and number of winded outer-rings on the electrochemical performance through numerical simulations. Results showed that electronic conductivity is the most crucial factor in determining the electrochemical performance. In combination with multi-material 3D printing, the battery configuration proposed in this study may be utilized to build LIBs with higher energy density.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.