Optimal control and genetic algorithms in modeling dynamical allocation of resources for a three-sector economy

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
T. Alexeeva, L. Chechurin, V. Dodonov, Zahra Honarmand, Nikolay V. Kuznetsov, P. Neittaanmäki
{"title":"Optimal control and genetic algorithms in modeling dynamical allocation of resources for a three-sector economy","authors":"T. Alexeeva, L. Chechurin, V. Dodonov, Zahra Honarmand, Nikolay V. Kuznetsov, P. Neittaanmäki","doi":"10.1080/17445760.2022.2136372","DOIUrl":null,"url":null,"abstract":"ABSTRACT The task of looking for the optimal allocation of resources in an economy is fraught with a number of severe restrictions. This is manifested in the complexity of the technical implementation of the solution even in the case of a low dimension of the problem. In this paper, we consider two approaches, analytical and numerical, for deriving the dynamical optimal allocation of resources in a three-sector economy and show that the use of modern artificial intelligence (AI) technologies such as genetic algorithms (GA), can be useful for expanding the range of effective tools and new contributions to this problem. GRAPHICAL ABSTRACT","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2022.2136372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The task of looking for the optimal allocation of resources in an economy is fraught with a number of severe restrictions. This is manifested in the complexity of the technical implementation of the solution even in the case of a low dimension of the problem. In this paper, we consider two approaches, analytical and numerical, for deriving the dynamical optimal allocation of resources in a three-sector economy and show that the use of modern artificial intelligence (AI) technologies such as genetic algorithms (GA), can be useful for expanding the range of effective tools and new contributions to this problem. GRAPHICAL ABSTRACT
三部门经济资源动态分配建模中的最优控制和遗传算法
摘要在一个经济体中,寻求资源优化配置的任务充满了许多严格的限制。这表现在解决方案的技术实现的复杂性上,即使在问题的维度较低的情况下也是如此。在本文中,我们考虑了两种方法,即分析和数值方法,来推导三部门经济中资源的动态最优分配,并表明使用现代人工智能(AI)技术,如遗传算法(GA),可以有助于扩大有效工具的范围,并为这个问题做出新的贡献。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信