Zero inertia limit of incompressible Qian–Sheng model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yi-Long Luo, Yangjun Ma
{"title":"Zero inertia limit of incompressible Qian–Sheng model","authors":"Yi-Long Luo, Yangjun Ma","doi":"10.1142/s0219530521500184","DOIUrl":null,"url":null,"abstract":"The Qian–Sheng model is a system describing the hydrodynamics of nematic liquid crystals in the Q-tensor framework. When the inertial effect is included, it is a hyperbolic-type system involving a second-order material derivative coupling with forced incompressible Navier–Stokes equations. If formally letting the inertial constant [Formula: see text] go to zero, the resulting system is the corresponding parabolic model. We provide the result on the rigorous justification of this limit in [Formula: see text] with small initial data, which validates mathematically the parabolic Qian–Sheng model. To achieve this, an initial layer is introduced to not only overcome the disparity of the initial conditions between the hyperbolic and parabolic models, but also make the convergence rate optimal. Moreover, a novel [Formula: see text]-dependent energy norm is carefully designed, which is non-negative only when [Formula: see text] is small enough, and handles the difficulty brought by the second-order material derivative.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Qian–Sheng model is a system describing the hydrodynamics of nematic liquid crystals in the Q-tensor framework. When the inertial effect is included, it is a hyperbolic-type system involving a second-order material derivative coupling with forced incompressible Navier–Stokes equations. If formally letting the inertial constant [Formula: see text] go to zero, the resulting system is the corresponding parabolic model. We provide the result on the rigorous justification of this limit in [Formula: see text] with small initial data, which validates mathematically the parabolic Qian–Sheng model. To achieve this, an initial layer is introduced to not only overcome the disparity of the initial conditions between the hyperbolic and parabolic models, but also make the convergence rate optimal. Moreover, a novel [Formula: see text]-dependent energy norm is carefully designed, which is non-negative only when [Formula: see text] is small enough, and handles the difficulty brought by the second-order material derivative.
不可压缩Qian-Sheng模型的零惯性极限
钱-盛模型是一个在Q张量框架下描述向列相液晶流体力学的系统。当包括惯性效应时,它是一个双曲型系统,涉及具有强迫不可压缩Navier–Stokes方程的二阶材料导数耦合。如果形式上让惯性常数[公式:见正文]为零,则得到的系统就是相应的抛物型模型。我们在[公式:见正文]中用小的初始数据提供了对这一极限的严格证明的结果,这在数学上验证了抛物型钱-盛模型。为了实现这一点,引入了初始层,不仅克服了双曲型和抛物型模型之间初始条件的差异,而且使收敛速度最优。此外,还精心设计了一种新的[公式:见正文]依赖的能量范数,只有当[公式:看正文]足够小时,它才是非负的,并处理了二阶材料导数带来的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信