{"title":"Zero inertia limit of incompressible Qian–Sheng model","authors":"Yi-Long Luo, Yangjun Ma","doi":"10.1142/s0219530521500184","DOIUrl":null,"url":null,"abstract":"The Qian–Sheng model is a system describing the hydrodynamics of nematic liquid crystals in the Q-tensor framework. When the inertial effect is included, it is a hyperbolic-type system involving a second-order material derivative coupling with forced incompressible Navier–Stokes equations. If formally letting the inertial constant [Formula: see text] go to zero, the resulting system is the corresponding parabolic model. We provide the result on the rigorous justification of this limit in [Formula: see text] with small initial data, which validates mathematically the parabolic Qian–Sheng model. To achieve this, an initial layer is introduced to not only overcome the disparity of the initial conditions between the hyperbolic and parabolic models, but also make the convergence rate optimal. Moreover, a novel [Formula: see text]-dependent energy norm is carefully designed, which is non-negative only when [Formula: see text] is small enough, and handles the difficulty brought by the second-order material derivative.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500184","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Qian–Sheng model is a system describing the hydrodynamics of nematic liquid crystals in the Q-tensor framework. When the inertial effect is included, it is a hyperbolic-type system involving a second-order material derivative coupling with forced incompressible Navier–Stokes equations. If formally letting the inertial constant [Formula: see text] go to zero, the resulting system is the corresponding parabolic model. We provide the result on the rigorous justification of this limit in [Formula: see text] with small initial data, which validates mathematically the parabolic Qian–Sheng model. To achieve this, an initial layer is introduced to not only overcome the disparity of the initial conditions between the hyperbolic and parabolic models, but also make the convergence rate optimal. Moreover, a novel [Formula: see text]-dependent energy norm is carefully designed, which is non-negative only when [Formula: see text] is small enough, and handles the difficulty brought by the second-order material derivative.
期刊介绍:
Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.