Fully degenerate Bernoulli numbers and polynomials

IF 2 3区 数学 Q1 MATHEMATICS
Taekyun Kim, Dae San Kim, Jin-Woo Park
{"title":"Fully degenerate Bernoulli numbers and polynomials","authors":"Taekyun Kim, Dae San Kim, Jin-Woo Park","doi":"10.1515/dema-2022-0160","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this article is to study the fully degenerate Bernoulli polynomials and numbers, which are a degenerate version of Bernoulli polynomials and numbers and arise naturally from the Volkenborn integral of the degenerate exponential functions on Z p {{\\mathbb{Z}}}_{p} . We find some explicit expressions for the fully degenerate Bernoulli polynomials and numbers in terms of the degenerate Stirling numbers of the second kind, the degenerate r r -Stirling numbers of the second kind, and the degenerate Stirling polynomials. We also consider the degenerate poly-Bernoulli polynomials and derive explicit representations for them in terms of the same degenerate Stirling numbers and polynomials.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0160","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The aim of this article is to study the fully degenerate Bernoulli polynomials and numbers, which are a degenerate version of Bernoulli polynomials and numbers and arise naturally from the Volkenborn integral of the degenerate exponential functions on Z p {{\mathbb{Z}}}_{p} . We find some explicit expressions for the fully degenerate Bernoulli polynomials and numbers in terms of the degenerate Stirling numbers of the second kind, the degenerate r r -Stirling numbers of the second kind, and the degenerate Stirling polynomials. We also consider the degenerate poly-Bernoulli polynomials and derive explicit representations for them in terms of the same degenerate Stirling numbers and polynomials.
完全退化伯努利数和多项式
摘要本文的目的是研究完全退化的伯努利多项式和数,它们是伯努利方程和数的退化版本,自然产生于Z p{\mathbb{Z}}}_{p}上退化指数函数的Volkenborn积分。我们根据第二类退化Stirling数、第二类简并r-Stirling数和退化Stirling-多项式得到了完全退化Bernoulli多项式和数的一些显式表达式。我们还考虑了退化的poly-Bernoulli多项式,并根据相同的退化Stirling数和多项式导出了它们的显式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信