Weizhong Wang , Yi Wang , Shuyi Fan , Xiao Han , Qun Wu , Dragan Pamucar
{"title":"A complex spherical fuzzy CRADIS method based Fine-Kinney framework for occupational risk evaluation in natural gas pipeline construction","authors":"Weizhong Wang , Yi Wang , Shuyi Fan , Xiao Han , Qun Wu , Dragan Pamucar","doi":"10.1016/j.petrol.2022.111246","DOIUrl":null,"url":null,"abstract":"<div><p><span>Occupational risk evaluation is one of the most indispensable issues in the risk prevention and control process for the natural gas pipeline construction (NGPC) project. The Fine-Kinney model, recognized as an effective occupational risk evaluation technique, has limited capability to handle the occupational risk analysis problem under the complex spherical fuzzy (CSF) environment. Accordingly, a synthetical Fine-Kinney framework based on the compromise ranking of alternatives from distance to ideal solution (CRADIS) method is developed to overcome these downsides of occupation risk analysis in the NGPC project within the CSF context. A prioritized weighted average (PWA) operator for complex spherical fuzzy numbers (CSFNs) is incorporated into the group risk </span>evaluation matrix generation process, which can take the priority degrees of experts into account. Then, the extended CRADIS method-based Fine-Kinney framework is generated, in which the Choquet integral for CSFNs is incorporated to reflect the impact of interactive risk factors. Next, the detailed solution procedures of the framework for handling the occupational risk evaluation problem are presented. Finally, the described framework is employed as an empirical example of occupational risk analysis for the NGPC project to demonstrate its feasibility in practice. After that, a sensitivity analysis of the parameter is investigated to testify to the stability and rationality of the reported synthetical Fine-Kinney framework. Subsequently, to further display the advantages of the developed Fine-Kinney framework, a comparative study is implemented to discuss the evaluation result of occupational risk derived from the proposed framework and those of the existing similar Fine-Kinney frameworks. The analysis results indicate that the occupational risk (attack by human or animal) with the maximum risk priority value (1.000) using the framework is identified as the most serious risk for the NGPC project.</p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111246"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010981","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 12
Abstract
Occupational risk evaluation is one of the most indispensable issues in the risk prevention and control process for the natural gas pipeline construction (NGPC) project. The Fine-Kinney model, recognized as an effective occupational risk evaluation technique, has limited capability to handle the occupational risk analysis problem under the complex spherical fuzzy (CSF) environment. Accordingly, a synthetical Fine-Kinney framework based on the compromise ranking of alternatives from distance to ideal solution (CRADIS) method is developed to overcome these downsides of occupation risk analysis in the NGPC project within the CSF context. A prioritized weighted average (PWA) operator for complex spherical fuzzy numbers (CSFNs) is incorporated into the group risk evaluation matrix generation process, which can take the priority degrees of experts into account. Then, the extended CRADIS method-based Fine-Kinney framework is generated, in which the Choquet integral for CSFNs is incorporated to reflect the impact of interactive risk factors. Next, the detailed solution procedures of the framework for handling the occupational risk evaluation problem are presented. Finally, the described framework is employed as an empirical example of occupational risk analysis for the NGPC project to demonstrate its feasibility in practice. After that, a sensitivity analysis of the parameter is investigated to testify to the stability and rationality of the reported synthetical Fine-Kinney framework. Subsequently, to further display the advantages of the developed Fine-Kinney framework, a comparative study is implemented to discuss the evaluation result of occupational risk derived from the proposed framework and those of the existing similar Fine-Kinney frameworks. The analysis results indicate that the occupational risk (attack by human or animal) with the maximum risk priority value (1.000) using the framework is identified as the most serious risk for the NGPC project.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.