Yue Zhou, Wei Bao, Fangying Yan, Ying Zhang, Laili Wang
{"title":"Carbon Footprint and Water Footprint Assessment of Down Jackets","authors":"Yue Zhou, Wei Bao, Fangying Yan, Ying Zhang, Laili Wang","doi":"10.1177/24723444231172216","DOIUrl":null,"url":null,"abstract":"Down jackets consume a lot of energy and water, and emit greenhouse gases, wastewater and other pollutants during the life cycle. For example, melt spinning polyester fibre production, spinning, weaving, fabric dyeing and finishing are high-energy consumption processes. Down processing, fabric dyeing and finishing are typical water consumption and wastewater pollutant discharge processes. Carbon and water footprints are practical tools for evaluating the environmental impact of a product in its life cycle. This article quantified and evaluated the carbon and water footprints of the life cycle of 100 down jackets – from raw material production to recycling and disposal without transportation activities. The results showed that the carbon footprint of the 100 down jackets production was 2544.1 kgCO2e with recycling. As for the water footprint, it showed that fabric production had a great impact on water eutrophication and water scarcity. The water scarcity footprint of 100 down jackets production was 27.46 m3H2Ot, respectively. The water eutrophication footprint generated by producing 100 down jackets in new industry was 1.91 kgPO43−eq. The comprehensive assessment of carbon footprint and water footprint with the life cycle assessment polygon method indicated that the raw material production phase of down jackets generated a more significant impact on the environment than the use phase. The impact on the environment during the use phase is primarily the environmental load on water resources.","PeriodicalId":6955,"journal":{"name":"AATCC Journal of Research","volume":"10 1","pages":"300 - 310"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AATCC Journal of Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/24723444231172216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Down jackets consume a lot of energy and water, and emit greenhouse gases, wastewater and other pollutants during the life cycle. For example, melt spinning polyester fibre production, spinning, weaving, fabric dyeing and finishing are high-energy consumption processes. Down processing, fabric dyeing and finishing are typical water consumption and wastewater pollutant discharge processes. Carbon and water footprints are practical tools for evaluating the environmental impact of a product in its life cycle. This article quantified and evaluated the carbon and water footprints of the life cycle of 100 down jackets – from raw material production to recycling and disposal without transportation activities. The results showed that the carbon footprint of the 100 down jackets production was 2544.1 kgCO2e with recycling. As for the water footprint, it showed that fabric production had a great impact on water eutrophication and water scarcity. The water scarcity footprint of 100 down jackets production was 27.46 m3H2Ot, respectively. The water eutrophication footprint generated by producing 100 down jackets in new industry was 1.91 kgPO43−eq. The comprehensive assessment of carbon footprint and water footprint with the life cycle assessment polygon method indicated that the raw material production phase of down jackets generated a more significant impact on the environment than the use phase. The impact on the environment during the use phase is primarily the environmental load on water resources.
期刊介绍:
AATCC Journal of Research. This textile research journal has a broad scope: from advanced materials, fibers, and textile and polymer chemistry, to color science, apparel design, and sustainability.
Now indexed by Science Citation Index Extended (SCIE) and discoverable in the Clarivate Analytics Web of Science Core Collection! The Journal’s impact factor is available in Journal Citation Reports.