Ye Peng, Bao Yu, Xianming Zhang, Wenlong Li, Haifeng Gong
{"title":"Heat strengthening of double-field coupling demulsification of industrial waste oil emulsion","authors":"Ye Peng, Bao Yu, Xianming Zhang, Wenlong Li, Haifeng Gong","doi":"10.1007/s13203-018-0221-x","DOIUrl":null,"url":null,"abstract":"<p>Demulsification of highly aqueous waste oil is difficult to complete by a single process efficiently. The dewatering-type hydrocyclone is used as the unit body and includes the high-voltage electrode to realize demulsification and dewatering ability of the coupling of high-voltage electric and swirling centrifugal fields in waste oil emulsion efficiently. This study considers the influence of heating temperature on demulsification in coupled field. Thus, a heat-strengthening double-field demulsification process is proposed. Specifically, the effect of heat strengthening on demulsification, dewatering, and separation of double-field coupled by numerical simulation and experimental methods was investigated. The temperatures of heat-strengthening were 60?°C, 65?°C, 70?°C, and 75?°C. The results show that the separation efficiency predicted by numerical simulation are in good agreement with the experimental results. And the heat-strengthening can effectively enhance the separation effect of two fields and improve the efficiency of the oil–water separation of industrial waste oil. When the heating temperature is raised from 60 to 65?°C, and from 65 to 70?°C, the separation efficiency increases by approximately 4.1% and 6.7%, respectively.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"9 1","pages":"13 - 22"},"PeriodicalIF":0.1250,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-018-0221-x","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-018-0221-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Demulsification of highly aqueous waste oil is difficult to complete by a single process efficiently. The dewatering-type hydrocyclone is used as the unit body and includes the high-voltage electrode to realize demulsification and dewatering ability of the coupling of high-voltage electric and swirling centrifugal fields in waste oil emulsion efficiently. This study considers the influence of heating temperature on demulsification in coupled field. Thus, a heat-strengthening double-field demulsification process is proposed. Specifically, the effect of heat strengthening on demulsification, dewatering, and separation of double-field coupled by numerical simulation and experimental methods was investigated. The temperatures of heat-strengthening were 60?°C, 65?°C, 70?°C, and 75?°C. The results show that the separation efficiency predicted by numerical simulation are in good agreement with the experimental results. And the heat-strengthening can effectively enhance the separation effect of two fields and improve the efficiency of the oil–water separation of industrial waste oil. When the heating temperature is raised from 60 to 65?°C, and from 65 to 70?°C, the separation efficiency increases by approximately 4.1% and 6.7%, respectively.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.