Regularities of Aerogasodynamic Processes During the Underground Fires

Q3 Engineering
M. Lišková, V. Golik
{"title":"Regularities of Aerogasodynamic Processes During the Underground Fires","authors":"M. Lišková, V. Golik","doi":"10.24000/0409-2961-2023-5-15-19","DOIUrl":null,"url":null,"abstract":"The issue was studied related to increasing occupational safety in underground mining of the mineral raw materials. The forms of the goaf are classified. An algorithm was developed for air distribution in emergency ventilation mode, including when the main ventilation fan is turned on after an emergency stop. The possibilities and mechanism of the fan influence at the stages of ventilation in emergency conditions was clarified. An algorithm is proposed for calculating ventilation parameters in case of emergency reversion of the ventilation jet. The methods for calculating the amount of air and the inertia of the ventilation system are presented at normal ventilation and during the transition from normal ventilation to emergency. The problem of air distribution during the transition period is solved with the representation of the air branch in the form of a node with multidirectional and limited movement of air jets. The methodology for predicting hazardous working situations is detailed based on the laws of diffusion transfer of gas components of the mine atmosphere. A new method of experimental determination of elements of the transitional period of ventilation was developed. The results are given concerning the study of the influence of the goaf on the efficiency of the fans operation and the duration of the transition process after reversing the fan in an emergency. A new idea is substantiated related to the gas situation as a fragment of a ventilation network with distributed sources of oxygen absorption and gas release. The structure of the matrix of the state of mine workings in an emergency was proposed. An algorithm for calculating ventilation modes for optimizing emergency response plans is formulated. It is shown that the establishment of the regularity of the processes of gas transfer during emergency ventilation mode allows to increase the efficiency of measures to ensure occupational safety in underground mining.","PeriodicalId":35650,"journal":{"name":"Bezopasnost'' Truda v Promyshlennosti","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bezopasnost'' Truda v Promyshlennosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24000/0409-2961-2023-5-15-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The issue was studied related to increasing occupational safety in underground mining of the mineral raw materials. The forms of the goaf are classified. An algorithm was developed for air distribution in emergency ventilation mode, including when the main ventilation fan is turned on after an emergency stop. The possibilities and mechanism of the fan influence at the stages of ventilation in emergency conditions was clarified. An algorithm is proposed for calculating ventilation parameters in case of emergency reversion of the ventilation jet. The methods for calculating the amount of air and the inertia of the ventilation system are presented at normal ventilation and during the transition from normal ventilation to emergency. The problem of air distribution during the transition period is solved with the representation of the air branch in the form of a node with multidirectional and limited movement of air jets. The methodology for predicting hazardous working situations is detailed based on the laws of diffusion transfer of gas components of the mine atmosphere. A new method of experimental determination of elements of the transitional period of ventilation was developed. The results are given concerning the study of the influence of the goaf on the efficiency of the fans operation and the duration of the transition process after reversing the fan in an emergency. A new idea is substantiated related to the gas situation as a fragment of a ventilation network with distributed sources of oxygen absorption and gas release. The structure of the matrix of the state of mine workings in an emergency was proposed. An algorithm for calculating ventilation modes for optimizing emergency response plans is formulated. It is shown that the establishment of the regularity of the processes of gas transfer during emergency ventilation mode allows to increase the efficiency of measures to ensure occupational safety in underground mining.
地下火灾过程中空气动力学过程的规律
研究了提高矿物原料地下开采职业安全的问题。对采空区的形态进行了分类。提出了紧急通风模式下的气流组织算法,包括紧急停机后开启主通风机时的气流组织算法。阐明了风机在紧急工况通风各阶段影响的可能性和作用机理。提出了一种计算紧急回流时通风参数的算法。给出了正常通风和从正常通风过渡到紧急通风时通风系统风量和惯量的计算方法。采用多方向有限运动的节点形式来表示空气分支,解决了过渡时期的气流分布问题。详细介绍了基于矿井大气中气体组分扩散传递规律的危险工况预测方法。提出了一种新的试验测定通风过渡期要素的方法。给出了采空区对风机运行效率的影响以及紧急情况下换向风机后过渡时间的研究结果。一个新的想法得到证实,有关气体情况作为一个通风网络的碎片,具有分散的吸氧和气体释放源。提出了紧急情况下矿山工作状态矩阵的结构。提出了一种优化应急预案的通风方式计算算法。研究表明,建立应急通风方式下气体输送过程的规律性,可以提高井下安全保障措施的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bezopasnost'' Truda v Promyshlennosti
Bezopasnost'' Truda v Promyshlennosti Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信