Syndetically transitive and syndetically sensitive Iterated Function Systems

IF 0.4 Q4 MATHEMATICS
E. Rezaali, F. Ghane, H. Ebadizadeh
{"title":"Syndetically transitive and syndetically sensitive Iterated Function Systems","authors":"E. Rezaali, F. Ghane, H. Ebadizadeh","doi":"10.1080/1726037X.2018.1436273","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we discuss several stronger forms of sensitivities for iterated function systems (IFSs), such as strong sensitivity and syndetical sensitivity, and obtain some sufficient conditions for an IFS to have such sensitivities. We pay special attention to IFSs acting on the circle S1. We prove that each sensitive IFS acting on the circle S1 generating by a finite family of circle homeomorphisms is strongly sensitive. However, to obtain syndetical sensitivity, we impose some extra conditions on the IFS. Finally, we study sensitivity properties for syndetical transitive IFSs. We show that each syndetically transitive IFS is topologically ergodic.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"16 1","pages":"129 - 137"},"PeriodicalIF":0.4000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2018.1436273","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2018.1436273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we discuss several stronger forms of sensitivities for iterated function systems (IFSs), such as strong sensitivity and syndetical sensitivity, and obtain some sufficient conditions for an IFS to have such sensitivities. We pay special attention to IFSs acting on the circle S1. We prove that each sensitive IFS acting on the circle S1 generating by a finite family of circle homeomorphisms is strongly sensitive. However, to obtain syndetical sensitivity, we impose some extra conditions on the IFS. Finally, we study sensitivity properties for syndetical transitive IFSs. We show that each syndetically transitive IFS is topologically ergodic.
并传递和并敏感迭代函数系统
摘要本文讨论了迭代函数系统(IFS)的几种强灵敏度形式,如强灵敏度和合成灵敏度,并得到了IFS具有强灵敏度的一些充分条件。我们特别关注作用在圆S1上的ifs。证明了作用于由有限一族圆同胚生成的圆S1上的每个敏感IFS都是强敏感的。然而,为了获得合成灵敏度,我们对IFS施加了一些额外的条件。最后,我们研究了合成传递ifs的灵敏度性质。我们证明了每个综合传递的IFS是拓扑遍历的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信