XNA enzymes by evolution and design

Turnee N. Malik , John C. Chaput
{"title":"XNA enzymes by evolution and design","authors":"Turnee N. Malik ,&nbsp;John C. Chaput","doi":"10.1016/j.crchbi.2021.100012","DOIUrl":null,"url":null,"abstract":"<div><p>The last decade has witnessed tremendous growth in the field of synthetic genetics, an area of synthetic biology that applies concepts that are commonly associated with the field of genetics, such as heredity and evolution, to artificial genetic polymers with novel backbone structures (XNAs). In addition to the emergence of biologically stable affinity reagents (aptamers), progress in this area has led to the discovery of XNA enzymes (XNAzymes) that are capable of mediating transphosphorylation chemistry with multiple turnover activity. This review explores the evolution and rational design of XNAzymes as well as their potential as reagents in biomedical applications.</p></div>","PeriodicalId":72747,"journal":{"name":"Current research in chemical biology","volume":"1 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666246921000124/pdfft?md5=2f1ec95fffd0528264b1aa90dca4db65&pid=1-s2.0-S2666246921000124-main.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in chemical biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666246921000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The last decade has witnessed tremendous growth in the field of synthetic genetics, an area of synthetic biology that applies concepts that are commonly associated with the field of genetics, such as heredity and evolution, to artificial genetic polymers with novel backbone structures (XNAs). In addition to the emergence of biologically stable affinity reagents (aptamers), progress in this area has led to the discovery of XNA enzymes (XNAzymes) that are capable of mediating transphosphorylation chemistry with multiple turnover activity. This review explores the evolution and rational design of XNAzymes as well as their potential as reagents in biomedical applications.

XNA酶的进化和设计
合成遗传学是合成生物学的一个领域,它将遗传和进化等通常与遗传学领域相关的概念应用于具有新型主链结构(XNAs)的人工遗传聚合物。除了生物稳定的亲和试剂(适体)的出现外,这一领域的进展还导致了XNA酶(XNAzymes)的发现,这些酶能够介导具有多次转换活性的转磷酸化化学。本文综述了XNAzymes的演变、合理设计及其作为生物医学试剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current research in chemical biology
Current research in chemical biology Biochemistry, Genetics and Molecular Biology (General)
自引率
0.00%
发文量
0
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信