{"title":"Stability and Global Sensitivity Analysis for an Agree-Disagree Model: Partial Rank Correlation Coefficient and Latin Hypercube Sampling Methods","authors":"S. Bidah, O. Zakary, M. Rachik","doi":"10.1155/2020/5051248","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new mathematical model that describes agree-disagree opinions during polls. We first present the model and its different compartments. Then, we use the next-generation matrix method to compute thresholds of equilibrium stability. We perform the stability analysis of equilibria to determine under which conditions these equilibrium points are stable or unstable. We show that the existence and stability of these equilibria are controlled by the calculated thresholds. Finally, we also perform several computational and statistical experiments to validate the theoretical results obtained in this work. To study the influence of various parameters on these thresholds and to identify the most influential parameters, a global sensitivity analysis is carried out based on the partial rank correlation coefficient method and the Latin hypercube sampling.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2020 1","pages":"1-14"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/5051248","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/5051248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 20
Abstract
In this paper, we present a new mathematical model that describes agree-disagree opinions during polls. We first present the model and its different compartments. Then, we use the next-generation matrix method to compute thresholds of equilibrium stability. We perform the stability analysis of equilibria to determine under which conditions these equilibrium points are stable or unstable. We show that the existence and stability of these equilibria are controlled by the calculated thresholds. Finally, we also perform several computational and statistical experiments to validate the theoretical results obtained in this work. To study the influence of various parameters on these thresholds and to identify the most influential parameters, a global sensitivity analysis is carried out based on the partial rank correlation coefficient method and the Latin hypercube sampling.