{"title":"On spatial beam self-cleaning from the perspective of optical wave thermalization in multimode graded-index fibers","authors":"M. Ferraro, F. Mangini, M. Zitelli, S. Wabnitz","doi":"10.1080/23746149.2023.2228018","DOIUrl":null,"url":null,"abstract":"The input power-induced transformation of the transverse intensity profile at the output of graded-index multimode optical fibers from speckles into a bell-shaped beam sitting on a low intensity background is known as spatial beam self-cleaning. Its remarkable properties are the output beam brightness improvement and robustness to fiber bending and squeezing. These properties permit to overcome the limitations of multimode fibers in terms of low output beam quality, which is very promising for a host of technological applications. In this review, we outline recent progress in the understanding of spatial beam self-cleaning, which can be seen as a state of thermal equilibrium in the complex process of modal four-wave mixing. In other words, the associated nonlinear redistribution of the mode powers which ultimately favors the fundamental mode of the fiber can be described in the framework of statistical mechanics applied to the gas of photons populating the fiber modes. On the one hand, this description has been corroborated by a series of experiments by different groups. On the other hand, some open issues still remain, and we offer a perspective for future studies in this emerging and controversial field of research.","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2023.2228018","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The input power-induced transformation of the transverse intensity profile at the output of graded-index multimode optical fibers from speckles into a bell-shaped beam sitting on a low intensity background is known as spatial beam self-cleaning. Its remarkable properties are the output beam brightness improvement and robustness to fiber bending and squeezing. These properties permit to overcome the limitations of multimode fibers in terms of low output beam quality, which is very promising for a host of technological applications. In this review, we outline recent progress in the understanding of spatial beam self-cleaning, which can be seen as a state of thermal equilibrium in the complex process of modal four-wave mixing. In other words, the associated nonlinear redistribution of the mode powers which ultimately favors the fundamental mode of the fiber can be described in the framework of statistical mechanics applied to the gas of photons populating the fiber modes. On the one hand, this description has been corroborated by a series of experiments by different groups. On the other hand, some open issues still remain, and we offer a perspective for future studies in this emerging and controversial field of research.
期刊介绍:
Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including:
Chemistry
Materials Science
Engineering
Biology
Medicine