Prediksi Kemunculan Titik Panas Di Lahan Gambut Provinsi Riau Menggunakan Long Short Term Memory

Ulfa Khaira, Muksin Alfalah, Pikir Claudia Septiani Gulo, Robi Purnomo
{"title":"Prediksi Kemunculan Titik Panas Di Lahan Gambut Provinsi Riau Menggunakan Long Short Term Memory","authors":"Ulfa Khaira, Muksin Alfalah, Pikir Claudia Septiani Gulo, Robi Purnomo","doi":"10.30591/JPIT.V5I3.1931","DOIUrl":null,"url":null,"abstract":" Indonesia is blessed with the largest and most diverse tropical forests in the world. Millions of Indonesians depend on these forests for their lives. But lately forest fires have become an international concern as an environmental and economic issue. One of the causes of the decline in the number of forests is forest fires. Forest fires produce high particle emissions which can endanger human health. For this reason, necessary precautions. One prevention that can be done is to predict the emergence of hotspots, especially in areas where forest fires are frequent. One way to reduce forest fires is to predict the emergence of hot spots on peatlands with the Long Short Term Memory (LSTM) method. This study predicts the emergence of hotspots in Riau Province over the next 6 months, from August 2019 to January 2020. LSTM is able to predict time series with RMSE 363.38.","PeriodicalId":53375,"journal":{"name":"Jurnal Informatika Jurnal Pengembangan IT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/JPIT.V5I3.1931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

 Indonesia is blessed with the largest and most diverse tropical forests in the world. Millions of Indonesians depend on these forests for their lives. But lately forest fires have become an international concern as an environmental and economic issue. One of the causes of the decline in the number of forests is forest fires. Forest fires produce high particle emissions which can endanger human health. For this reason, necessary precautions. One prevention that can be done is to predict the emergence of hotspots, especially in areas where forest fires are frequent. One way to reduce forest fires is to predict the emergence of hot spots on peatlands with the Long Short Term Memory (LSTM) method. This study predicts the emergence of hotspots in Riau Province over the next 6 months, from August 2019 to January 2020. LSTM is able to predict time series with RMSE 363.38.
廖内泥炭地的热信号使用较短的内存对其进行了预测
印度尼西亚拥有世界上最大、最多样化的热带森林。数以百万计的印尼人依靠这些森林为生。但最近,森林火灾作为一个环境和经济问题已经成为一个国际关注的问题。森林数量减少的原因之一是森林火灾。森林火灾产生的高颗粒排放物可危及人类健康。为此,有必要采取预防措施。可以采取的一种预防措施是预测热点地区的出现,特别是在森林火灾频发的地区。减少森林火灾的一种方法是利用长短期记忆(LSTM)方法预测泥炭地热点的出现。该研究预测,从2019年8月到2020年1月,廖内省将在未来6个月内出现热点。LSTM能够预测RMSE为363.38的时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信