Unipotent extensions and differential equations (after Bloch–Vlasenko)

IF 1.2 3区 数学 Q1 MATHEMATICS
M. Kerr
{"title":"Unipotent extensions and differential equations (after Bloch–Vlasenko)","authors":"M. Kerr","doi":"10.4310/cntp.2022.v16.n4.a5","DOIUrl":null,"url":null,"abstract":"S. Bloch and M. Vlasenko recently introduced a theory of \\emph{motivic Gamma functions}, given by periods of the Mellin transform of a geometric variation of Hodge structure, which they tie to the monodromy and asymptotic behavior of certain unipotent extensions of the variation. Here we further examine these Gamma functions and the related \\emph{Apery and Frobenius invariants} of a VHS, and establish a relationship to motivic cohomology and solutions to inhomogeneous Picard-Fuchs equations.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n4.a5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

S. Bloch and M. Vlasenko recently introduced a theory of \emph{motivic Gamma functions}, given by periods of the Mellin transform of a geometric variation of Hodge structure, which they tie to the monodromy and asymptotic behavior of certain unipotent extensions of the variation. Here we further examine these Gamma functions and the related \emph{Apery and Frobenius invariants} of a VHS, and establish a relationship to motivic cohomology and solutions to inhomogeneous Picard-Fuchs equations.
一元扩张与微分方程(Bloch–Vlasenko之后)
S.Bloch和M.Vlasenko最近引入了一个由Hodge结构的几何变分的Mellin变换周期给出的运动伽玛函数理论,他们将其与变分的某些单势扩展的单调性和渐近性联系起来。在这里,我们进一步研究了这些伽玛函数和VHS的相关\emph{Apery和Frobenius不变量},并建立了与动力上同调和非齐次Picard-Fuchs方程解的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信