Approximate Posterior Inference for Multiple Testing using a Hierarchical Mixed-effect Poisson Regression Model

IF 0.6 Q4 STATISTICS & PROBABILITY
Alejandro Murua, Annick Nembot-Simo
{"title":"Approximate Posterior Inference for Multiple Testing using a Hierarchical Mixed-effect Poisson Regression Model","authors":"Alejandro Murua, Annick Nembot-Simo","doi":"10.1285/I20705948V11N2P622","DOIUrl":null,"url":null,"abstract":"We present an approximate posterior inference  methodology for a Bayesian hierarchical mixed-effect Poisson regression model. The model serves us to address the multiple testing problem in the presence of many group or cluster effects. This is carried out through a specialized Bayesian false discovery rate procedure. The likelihood is simplified by an approximation based on Laplace's approximation for integrals and a trace approximation for the determinants. The posterior marginals are estimated using this approximated likelihood. In particular, we obtain credible regions for the parameters, as well as probability estimates for the difference between risks (Poisson intensities) associated with different groups or clusters, or different levels of the fixed effects. The methodology is illustrated through an application to a vaccine trial.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"11 1","pages":"622-654"},"PeriodicalIF":0.6000,"publicationDate":"2018-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V11N2P622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an approximate posterior inference  methodology for a Bayesian hierarchical mixed-effect Poisson regression model. The model serves us to address the multiple testing problem in the presence of many group or cluster effects. This is carried out through a specialized Bayesian false discovery rate procedure. The likelihood is simplified by an approximation based on Laplace's approximation for integrals and a trace approximation for the determinants. The posterior marginals are estimated using this approximated likelihood. In particular, we obtain credible regions for the parameters, as well as probability estimates for the difference between risks (Poisson intensities) associated with different groups or clusters, or different levels of the fixed effects. The methodology is illustrated through an application to a vaccine trial.
基于层次混合效应泊松回归模型的多元检验近似后验推理
我们提出了一种近似后验推理方法,用于贝叶斯层次混合效应泊松回归模型。该模型为我们解决了存在许多组或集群效应的多重测试问题。这是通过一个专门的贝叶斯错误发现率程序来实现的。通过基于积分的拉普拉斯近似和行列式的迹近似简化了似然。后验边缘是用这个近似似然估计的。特别是,我们获得了参数的可信区域,以及与不同组或集群或不同固定效应水平相关的风险(泊松强度)之间差异的概率估计。通过对疫苗试验的应用说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信