The complete positivity of symmetric tridiagonal and pentadiagonal matrices

IF 0.8 Q2 MATHEMATICS
Lei Cao, Darian Mclaren, S. Plosker
{"title":"The complete positivity of symmetric tridiagonal and pentadiagonal matrices","authors":"Lei Cao, Darian Mclaren, S. Plosker","doi":"10.1515/spma-2022-0173","DOIUrl":null,"url":null,"abstract":"Abstract We provide a decomposition that is sufficient in showing when a symmetric tridiagonal matrix A A is completely positive. Our decomposition can be applied to a wide range of matrices. We give alternate proofs for a number of related results found in the literature in a simple, straightforward manner. We show that the cp-rank of any completely positive irreducible tridiagonal doubly stochastic matrix is equal to its rank. We then consider symmetric pentadiagonal matrices, proving some analogous results and providing two different decompositions sufficient for complete positivity. We illustrate our constructions with a number of examples.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"11 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We provide a decomposition that is sufficient in showing when a symmetric tridiagonal matrix A A is completely positive. Our decomposition can be applied to a wide range of matrices. We give alternate proofs for a number of related results found in the literature in a simple, straightforward manner. We show that the cp-rank of any completely positive irreducible tridiagonal doubly stochastic matrix is equal to its rank. We then consider symmetric pentadiagonal matrices, proving some analogous results and providing two different decompositions sufficient for complete positivity. We illustrate our constructions with a number of examples.
对称三对角和五对角矩阵的完全正性
摘要给出了一个足以证明对称三对角矩阵a a是完全正的分解。我们的分解可以应用于广泛的矩阵。我们以一种简单、直接的方式为文献中发现的一些相关结果提供了替代证明。证明了任何完全正的不可约三对角双随机矩阵的cp-秩等于它的秩。然后,我们考虑对称五对角矩阵,证明了一些类似的结果,并提供了两种不同的分解,足以证明完全正性。我们用一些例子来说明我们的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信