Intramolecular OH stretching analysis of hydrated lysozyme in presence of trehalose by IR spectroscopy

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES
M. T. Caccamo, S. Magazù
{"title":"Intramolecular OH stretching analysis of hydrated lysozyme in presence of trehalose by IR spectroscopy","authors":"M. T. Caccamo, S. Magazù","doi":"10.1478/AAPP.97S1A2","DOIUrl":null,"url":null,"abstract":"The present work reports the analysis of the intramolecular OH stretching band obtained by InfraRed spectroscopy measurements. In order to characterize the effect of trehalose on the hydration properties of lysozyme the so-called two-state model is adopted for the analysis of the intramolecular OH stretching band. This latter assumes that, provided that the trehalose OH stretching contribution is subtracted, water molecules can be partitioned into two different states of inter-molecular bonding: molecules with two OH groups both hydrogen-bonded within a tetrahedral network, and molecules with one or two dangling OH groups. What emerges from this study is that trehalose significantly influences the hydrogen bond network of water and its temperature behaviour. Such a result confirms that the trehalose induced strengthening of the hydrogen-bond network leads to a stabilization of the lysozyme structure. Moreover, the analysis of the spectra temperature dependence shows a trehalose-induced higher thermal restraint of the lysozyme-trehalose-water system in respect to the lysozyme-water mixture.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.97S1A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

The present work reports the analysis of the intramolecular OH stretching band obtained by InfraRed spectroscopy measurements. In order to characterize the effect of trehalose on the hydration properties of lysozyme the so-called two-state model is adopted for the analysis of the intramolecular OH stretching band. This latter assumes that, provided that the trehalose OH stretching contribution is subtracted, water molecules can be partitioned into two different states of inter-molecular bonding: molecules with two OH groups both hydrogen-bonded within a tetrahedral network, and molecules with one or two dangling OH groups. What emerges from this study is that trehalose significantly influences the hydrogen bond network of water and its temperature behaviour. Such a result confirms that the trehalose induced strengthening of the hydrogen-bond network leads to a stabilization of the lysozyme structure. Moreover, the analysis of the spectra temperature dependence shows a trehalose-induced higher thermal restraint of the lysozyme-trehalose-water system in respect to the lysozyme-water mixture.
海藻糖存在下水合溶菌酶分子内OH拉伸的红外光谱分析
本工作报道了通过红外光谱测量获得的分子内OH伸缩带的分析。为了表征海藻糖对溶菌酶水合性能的影响,采用了所谓的双态模型来分析分子内OH伸缩带。后者假设,如果减去海藻糖OH拉伸的贡献,水分子可以被划分为两种不同的分子间键合状态:具有两个OH基团的分子,两者都氢键合在四面体网络中,以及具有一个或两个悬空OH基团的分子。这项研究表明,海藻糖显著影响水的氢键网络及其温度行为。这样的结果证实了海藻糖诱导的氢键网络的增强导致溶菌酶结构的稳定。此外,光谱-温度相关性的分析表明,相对于溶菌酶-水混合物,海藻糖诱导溶菌酶-海藻糖-水系统具有更高的热约束性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
31 weeks
期刊介绍: This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信