The Isoperimetric Problem in Carnot-Caratéodory Spaces

IF 0.2 Q4 MATHEMATICS
Valentina Franceschi
{"title":"The Isoperimetric Problem in Carnot-Caratéodory Spaces","authors":"Valentina Franceschi","doi":"10.6092/ISSN.2240-2829/7799","DOIUrl":null,"url":null,"abstract":"We present some recent results obtained on the isoperimetric problem in a class of Carnot-Caratheodory spaces, related to the Heisenberg group. This is the framework of Pansu’s conjecture about the shape of isoperimetric sets. Two different approaches are considered. On one hand we describe the isoperimetric problem in Grushin spaces, under a symmetry assumption that depends on the dimension and we provide a classification of isoperimetric sets for special dimensions. On the other hand, we present some results about the isoperimetric problem in a family of Riemannian manifolds approximating the Heisenberg group. In this context we study constant mean curvature surfaces. Inspired by Abresch and Rosenberg techniques on holomorphic quadratic differentials, we classify isoperimetric sets under a topological assumption.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"8 1","pages":"102-120"},"PeriodicalIF":0.2000,"publicationDate":"2018-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/7799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present some recent results obtained on the isoperimetric problem in a class of Carnot-Caratheodory spaces, related to the Heisenberg group. This is the framework of Pansu’s conjecture about the shape of isoperimetric sets. Two different approaches are considered. On one hand we describe the isoperimetric problem in Grushin spaces, under a symmetry assumption that depends on the dimension and we provide a classification of isoperimetric sets for special dimensions. On the other hand, we present some results about the isoperimetric problem in a family of Riemannian manifolds approximating the Heisenberg group. In this context we study constant mean curvature surfaces. Inspired by Abresch and Rosenberg techniques on holomorphic quadratic differentials, we classify isoperimetric sets under a topological assumption.
Carnot-Caratéodory空间中的等周问题
我们给出了一类与Heisenberg群有关的Carnot-Caratheodory空间中等周问题的一些最新结果。这是潘素关于等周集形状猜想的框架。考虑了两种不同的方法。一方面,我们描述了Grushin空间中的等周问题,在依赖于维度的对称假设下,我们提供了特殊维度的等周集的分类。另一方面,我们给出了一类逼近海森堡群的黎曼流形的等周问题的一些结果。在这种情况下,我们研究常平均曲率曲面。受Abresch和Rosenberg全纯二次微分技术的启发,我们在拓扑假设下对等周集进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信