Low-Temperature Conductivity Study of Multiorganic Solvent Electrolyte for Lithium-Sulfur Rechargeable Battery Application

IF 2.3 Q3 ELECTROCHEMISTRY
Ravi Dharavath, Ashwin Murali, Abdul Wasi Tarapathi, Balasubramanian Trichy Srinivasan, R. Kammili
{"title":"Low-Temperature Conductivity Study of Multiorganic Solvent Electrolyte for Lithium-Sulfur Rechargeable Battery Application","authors":"Ravi Dharavath, Ashwin Murali, Abdul Wasi Tarapathi, Balasubramanian Trichy Srinivasan, R. Kammili","doi":"10.1155/2019/8192931","DOIUrl":null,"url":null,"abstract":"The conductivity of an electrolyte plays a significant role in deciding the performance of any battery over a wide temperature range from −40°C to 60°C. In this work, the conductivity of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at a varied salt concentration range from 0.2 M to 2.0 M in a multisolvent organic electrolyte system over a wide temperature range from −40°C to 60°C is reported. The mixed solvents used were 1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), and tetraethylene glycol dimethyl ether (TEGDME) with an equal ratio of DOL : DME : TEGDME (1 : 1 : 1 by volume). The experimental analysis performed over a wide temperature range revealed the maximum conductivity at salt concentrations ranging from 1.0 M to 1.4 M for equal molar solvents. The optimum salt concentration and maximum conductivity in a different solvent composition ratio (i.e., 3 : 2 : 1) for all the temperatures is reported herein. The temperature-dependence conductivity of the salt concentration did not fit the Arrhenius plot, but it resembled the Vogel–Tamman–Fulcher plot behavior. The present conductivity study was carried out to evaluate the overall operable temperature limit of the electrolyte used in the lithium-sulfur battery.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2019 1","pages":"1-5"},"PeriodicalIF":2.3000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8192931","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8192931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 5

Abstract

The conductivity of an electrolyte plays a significant role in deciding the performance of any battery over a wide temperature range from −40°C to 60°C. In this work, the conductivity of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at a varied salt concentration range from 0.2 M to 2.0 M in a multisolvent organic electrolyte system over a wide temperature range from −40°C to 60°C is reported. The mixed solvents used were 1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), and tetraethylene glycol dimethyl ether (TEGDME) with an equal ratio of DOL : DME : TEGDME (1 : 1 : 1 by volume). The experimental analysis performed over a wide temperature range revealed the maximum conductivity at salt concentrations ranging from 1.0 M to 1.4 M for equal molar solvents. The optimum salt concentration and maximum conductivity in a different solvent composition ratio (i.e., 3 : 2 : 1) for all the temperatures is reported herein. The temperature-dependence conductivity of the salt concentration did not fit the Arrhenius plot, but it resembled the Vogel–Tamman–Fulcher plot behavior. The present conductivity study was carried out to evaluate the overall operable temperature limit of the electrolyte used in the lithium-sulfur battery.
锂硫二次电池用多有机溶剂电解质的低温电导率研究
电解质的导电性在−40°C至60°C的宽温度范围内对决定任何电池的性能起着重要作用。在这项工作中,双(三氟甲磺酰基)酰亚胺锂(LiTFSI)在不同盐浓度下的电导率范围为0.2 M至2.0 据报道,在−40°C至60°C的宽温度范围内,多溶剂有机电解质体系中的M。使用的混合溶剂为1,3-二氧戊环(DOL)、1,2-二甲氧基乙烷(DME)和四乙二醇二甲醚(TEGDME),DOL比例相等 : DME : TEGDME(1 : 1. : 1体积)。在宽温度范围内进行的实验分析显示,在1.0的盐浓度范围内,电导率最大 M至1.4 M表示等摩尔溶剂。在不同的溶剂组成比(即,3 : 2. : 1) 对于所有温度,本文都进行了报道。盐浓度的温度依赖性电导率不符合Arrhenius图,但类似于Vogel–Tamman–Fulcher图行为。进行本导电性研究是为了评估锂硫电池中使用的电解质的总体可操作温度极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信