Families of convex tilings

IF 0.6 4区 数学 Q3 MATHEMATICS
R. Kenyon
{"title":"Families of convex tilings","authors":"R. Kenyon","doi":"10.33044/revuma.3127","DOIUrl":null,"url":null,"abstract":". We study tilings of polygons R with arbitrary convex polygonal tiles. Such tilings come in continuous families obtained by moving tile edges parallel to themselves (keeping edge directions fixed). We study how the tile shapes and areas change in these families. In particular we show that if R is convex, the tile shapes can be arbitrarily prescribed (up to homothety). We also show that the tile areas and tile “orientations” determine the tiling. We associate to a tiling an underlying bipartite planar graph G and its corresponding Kasteleyn matrix K . If G has quadrilateral faces, we show that K is the differential of the map from edge intercepts to tile areas, and extract some geometric and probabilistic consequences.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.3127","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. We study tilings of polygons R with arbitrary convex polygonal tiles. Such tilings come in continuous families obtained by moving tile edges parallel to themselves (keeping edge directions fixed). We study how the tile shapes and areas change in these families. In particular we show that if R is convex, the tile shapes can be arbitrarily prescribed (up to homothety). We also show that the tile areas and tile “orientations” determine the tiling. We associate to a tiling an underlying bipartite planar graph G and its corresponding Kasteleyn matrix K . If G has quadrilateral faces, we show that K is the differential of the map from edge intercepts to tile areas, and extract some geometric and probabilistic consequences.
凸tilings族
。我们研究了任意凸多边形瓦片的多边形R的瓦片。通过移动与自身平行的瓦片边缘(保持边缘方向固定)来获得连续的瓦片。我们研究这些家庭的瓷砖形状和面积是如何变化的。特别地,我们证明了如果R是凸的,那么瓷砖的形状可以任意指定(直到同质)。我们还表明,瓷砖面积和瓷砖“方向”决定了瓷砖。我们将底层二部平面图G及其相应的Kasteleyn矩阵K与平铺联系起来。如果G具有四边形面,我们表明K是从边缘截距到瓷砖区域的映射的微分,并提取一些几何和概率结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信