{"title":"On the Kirwan map for moduli of Higgs bundles","authors":"Emily Cliff, T. Nevins, Shi-ying Shen","doi":"10.14231/AG-2021-011","DOIUrl":null,"url":null,"abstract":"Let $C$ be a smooth complex projective curve and $G$ a connected complex reductive group. We prove that if the center $Z(G)$ of $G$ is disconnected, then the Kirwan map $H^*\\big(\\operatorname{Bun}(G,C),\\mathbb{Q}\\big)\\rightarrow H^*\\big(\\mathcal{M}_{\\operatorname{Higgs}}^{\\operatorname{ss}},\\mathbb{Q}\\big)$ from the cohomology of the moduli stack of $G$-bundles to the moduli stack of semistable $G$-Higgs bundles, fails to be surjective: more precisely, the \"variant cohomology\" (and variant intersection cohomology) of the stack $\\mathcal{M}_{\\operatorname{Higgs}}^{\\operatorname{ss}}$ of semistable $G$-Higgs bundles, is always nontrivial. We also show that the image of the pullback map $H^*\\big(M_{\\operatorname{Higgs}}^{\\operatorname{ss}},\\mathbb{Q}\\big)\\rightarrow H^*\\big(\\mathcal{M}_{\\operatorname{Higgs}}^{\\operatorname{ss}},\\mathbb{Q}\\big)$, from the cohomology of the moduli space of semistable $G$-Higgs bundles to the stack of semistable $G$-Higgs bundles, cannot be contained in the image of the Kirwan map. The proof uses a Borel-Quillen--style localization result for equivariant cohomology of stacks to reduce to an explicit construction and calculation.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Let $C$ be a smooth complex projective curve and $G$ a connected complex reductive group. We prove that if the center $Z(G)$ of $G$ is disconnected, then the Kirwan map $H^*\big(\operatorname{Bun}(G,C),\mathbb{Q}\big)\rightarrow H^*\big(\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)$ from the cohomology of the moduli stack of $G$-bundles to the moduli stack of semistable $G$-Higgs bundles, fails to be surjective: more precisely, the "variant cohomology" (and variant intersection cohomology) of the stack $\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}}$ of semistable $G$-Higgs bundles, is always nontrivial. We also show that the image of the pullback map $H^*\big(M_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)\rightarrow H^*\big(\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)$, from the cohomology of the moduli space of semistable $G$-Higgs bundles to the stack of semistable $G$-Higgs bundles, cannot be contained in the image of the Kirwan map. The proof uses a Borel-Quillen--style localization result for equivariant cohomology of stacks to reduce to an explicit construction and calculation.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.