On the Kirwan map for moduli of Higgs bundles

IF 1.2 1区 数学 Q1 MATHEMATICS
Emily Cliff, T. Nevins, Shi-ying Shen
{"title":"On the Kirwan map for moduli of Higgs bundles","authors":"Emily Cliff, T. Nevins, Shi-ying Shen","doi":"10.14231/AG-2021-011","DOIUrl":null,"url":null,"abstract":"Let $C$ be a smooth complex projective curve and $G$ a connected complex reductive group. We prove that if the center $Z(G)$ of $G$ is disconnected, then the Kirwan map $H^*\\big(\\operatorname{Bun}(G,C),\\mathbb{Q}\\big)\\rightarrow H^*\\big(\\mathcal{M}_{\\operatorname{Higgs}}^{\\operatorname{ss}},\\mathbb{Q}\\big)$ from the cohomology of the moduli stack of $G$-bundles to the moduli stack of semistable $G$-Higgs bundles, fails to be surjective: more precisely, the \"variant cohomology\" (and variant intersection cohomology) of the stack $\\mathcal{M}_{\\operatorname{Higgs}}^{\\operatorname{ss}}$ of semistable $G$-Higgs bundles, is always nontrivial. We also show that the image of the pullback map $H^*\\big(M_{\\operatorname{Higgs}}^{\\operatorname{ss}},\\mathbb{Q}\\big)\\rightarrow H^*\\big(\\mathcal{M}_{\\operatorname{Higgs}}^{\\operatorname{ss}},\\mathbb{Q}\\big)$, from the cohomology of the moduli space of semistable $G$-Higgs bundles to the stack of semistable $G$-Higgs bundles, cannot be contained in the image of the Kirwan map. The proof uses a Borel-Quillen--style localization result for equivariant cohomology of stacks to reduce to an explicit construction and calculation.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $C$ be a smooth complex projective curve and $G$ a connected complex reductive group. We prove that if the center $Z(G)$ of $G$ is disconnected, then the Kirwan map $H^*\big(\operatorname{Bun}(G,C),\mathbb{Q}\big)\rightarrow H^*\big(\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)$ from the cohomology of the moduli stack of $G$-bundles to the moduli stack of semistable $G$-Higgs bundles, fails to be surjective: more precisely, the "variant cohomology" (and variant intersection cohomology) of the stack $\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}}$ of semistable $G$-Higgs bundles, is always nontrivial. We also show that the image of the pullback map $H^*\big(M_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)\rightarrow H^*\big(\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)$, from the cohomology of the moduli space of semistable $G$-Higgs bundles to the stack of semistable $G$-Higgs bundles, cannot be contained in the image of the Kirwan map. The proof uses a Borel-Quillen--style localization result for equivariant cohomology of stacks to reduce to an explicit construction and calculation.
关于Higgs丛模的Kirwan映射
设$C$为光滑复投影曲线,$G$为连通复约群。证明了如果$G$的中心$Z(G)$是不连通的,那么$G$-希格斯束的模堆到$G$-希格斯束的模堆的上同调的Kirwan映射$H^*\big(\operatorname{Bun}(G,C),\mathbb{Q}\big) $右行H^*\big(\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}},\mathbb{Q}\big)$不是满射:更准确地说,半稳定的$G$-Higgs束的$\mathcal{M}_{\operatorname{Higgs}}^{\operatorname{ss}}$的“变上同调”(和变交上同调)总是非平凡的。我们还证明了从半稳定的$G$-Higgs束的模空间到半稳定的$G$-Higgs束的堆的上同调的回拉映射$H^*\big(M_{\operatorname{ss}},\mathbb{Q}\big)$的像不能包含在Kirwan映射的像中。该证明使用了堆栈等变上同调的Borel-Quillen-风格的局部化结果,从而简化为显式的构造和计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信