On the lattice of weak topologies on the bicyclic monoid with adjoined zero

IF 0.3 Q4 MATHEMATICS, APPLIED
S. Bardyla, O. Gutik
{"title":"On the lattice of weak topologies on the bicyclic monoid with adjoined zero","authors":"S. Bardyla, O. Gutik","doi":"10.12958/adm1459","DOIUrl":null,"url":null,"abstract":"A Hausdorff topology τ on the bicyclic monoid with adjoined zero C0 is called weak if it is contained in the coarsest inverse semigroup topology on C0. We show that the lattice W of all weak shift-continuous topologies on C0 is isomorphic to the lattice SIF1×SIF1 where SIF1 is the set of all shift-invariant filters on ω with an attached element 1 endowed with the following partial order: F≤G if and only if G=1 or F⊂G. Also, we investigate cardinal characteristics of the lattice W. In particular, we prove that W contains an antichain of cardinality 2c and a well-ordered chain of cardinality c. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type t.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

A Hausdorff topology τ on the bicyclic monoid with adjoined zero C0 is called weak if it is contained in the coarsest inverse semigroup topology on C0. We show that the lattice W of all weak shift-continuous topologies on C0 is isomorphic to the lattice SIF1×SIF1 where SIF1 is the set of all shift-invariant filters on ω with an attached element 1 endowed with the following partial order: F≤G if and only if G=1 or F⊂G. Also, we investigate cardinal characteristics of the lattice W. In particular, we prove that W contains an antichain of cardinality 2c and a well-ordered chain of cardinality c. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type t.
关于具有邻接零的双环半群上弱拓扑的格
具有邻接零C0的双环半群上的Hausdorff拓扑τ被称为弱拓扑,如果它包含在C0上的最粗逆半群拓扑中。我们证明了C0上所有弱移位连续拓扑的格W同构于格SIF1×SIF1,其中SIF1是ω上所有移位不变滤波器的集合,附加元素1被赋予以下偏序:F≤G当且仅当G=1或F⊂G。此外,我们还研究了格W的基数特征。特别地,我们证明了W包含基数为2c的反链和基数为c的良序链。此外,存在阶类型为t的第一可数弱拓扑的良序链路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信