Time–Frequency Regression

Q3 Mathematics
Yoshito Funashima
{"title":"Time–Frequency Regression","authors":"Yoshito Funashima","doi":"10.1515/jem-2019-0025","DOIUrl":null,"url":null,"abstract":"Abstract Wavelet analysis is widely used to trace macroeconomic and financial phenomena in time–frequency domains. However, existing wavelet measures diverge from conventional regression estimators. Furthermore, a direct comparison between wavelet and traditional regression analyses is difficult. In this study, we modify the partial wavelet gain to provide an estimator that corresponds to the ordinary least squares estimator at each point of the time–frequency space. We argue that from the viewpoint of practical applications, the modified partial wavelet gain is suitable for contemporary regressions across time and frequencies, whereas the original partial wavelet gain is suitable for evaluating an aggregate relationship of contemporaneous and lead-lag relationships.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"10 1","pages":"21 - 32"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2019-0025","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2019-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Wavelet analysis is widely used to trace macroeconomic and financial phenomena in time–frequency domains. However, existing wavelet measures diverge from conventional regression estimators. Furthermore, a direct comparison between wavelet and traditional regression analyses is difficult. In this study, we modify the partial wavelet gain to provide an estimator that corresponds to the ordinary least squares estimator at each point of the time–frequency space. We argue that from the viewpoint of practical applications, the modified partial wavelet gain is suitable for contemporary regressions across time and frequencies, whereas the original partial wavelet gain is suitable for evaluating an aggregate relationship of contemporaneous and lead-lag relationships.
时间-频率回归
摘要小波分析被广泛用于在时间-频率域中跟踪宏观经济和金融现象。然而,现有的小波测度与传统的回归估计不同。此外,小波分析和传统回归分析之间的直接比较是困难的。在这项研究中,我们修改了部分小波增益,以提供一个估计器,该估计器对应于时间-频率空间的每个点的普通最小二乘估计器。我们认为,从实际应用的角度来看,修改的部分小波增益适用于跨时间和频率的当代回归,而原始部分小波增益适合于评估同期关系和超前-滞后关系的聚合关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信