Luca Pajola, Dongkai Chen, M. Conti, V. S. Subrahmanian
{"title":"A Novel Review Helpfulness Measure based on the User-Review-Item Paradigm","authors":"Luca Pajola, Dongkai Chen, M. Conti, V. S. Subrahmanian","doi":"10.1145/3585280","DOIUrl":null,"url":null,"abstract":"Review platforms are viral online services where users share and read opinions about products (e.g., a smartphone) or experiences (e.g., a meal at a restaurant). Other users may be influenced by such opinions when making deciding what to buy. The usability of review platforms is currently limited by the massive number of opinions on many products. Therefore, showing only the most helpful reviews for each product is in the best interests of both users and the platform (e.g., Amazon). The current state of the art is far from accurate in predicting how helpful a review is. First, most existing works lack compelling comparisons as many studies are conducted on datasets that are not publicly available. As a consequence, new studies are not always built on top of prior baselines. Second, most existing research focuses only on features derived from the review text, ignoring other fundamental aspects of the review platforms (e.g., the other reviews of a product, the order in which they were submitted). In this paper, we first carefully review the most relevant works in the area published during the last 20 years. We then propose the User-Review-Item (URI) paradigm, a novel abstraction for modeling the problem that moves the focus of the feature engineering from the review to the platform level. We empirically validate the URI paradigm on a dataset of products from six Amazon categories with 270 trained models: on average, classifiers gain +4% in F1-score when considering the whole review platform context. In our experiments, we further emphasize some problems with the helpfulness prediction task: (1) the users’ writing style changes over time (i.e., concept drift), (2) past models do not generalize well across different review categories, and (3) past methods to generate the ground-truth produced unreliable helpfulness scores, affecting the model evaluation phase.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3585280","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Review platforms are viral online services where users share and read opinions about products (e.g., a smartphone) or experiences (e.g., a meal at a restaurant). Other users may be influenced by such opinions when making deciding what to buy. The usability of review platforms is currently limited by the massive number of opinions on many products. Therefore, showing only the most helpful reviews for each product is in the best interests of both users and the platform (e.g., Amazon). The current state of the art is far from accurate in predicting how helpful a review is. First, most existing works lack compelling comparisons as many studies are conducted on datasets that are not publicly available. As a consequence, new studies are not always built on top of prior baselines. Second, most existing research focuses only on features derived from the review text, ignoring other fundamental aspects of the review platforms (e.g., the other reviews of a product, the order in which they were submitted). In this paper, we first carefully review the most relevant works in the area published during the last 20 years. We then propose the User-Review-Item (URI) paradigm, a novel abstraction for modeling the problem that moves the focus of the feature engineering from the review to the platform level. We empirically validate the URI paradigm on a dataset of products from six Amazon categories with 270 trained models: on average, classifiers gain +4% in F1-score when considering the whole review platform context. In our experiments, we further emphasize some problems with the helpfulness prediction task: (1) the users’ writing style changes over time (i.e., concept drift), (2) past models do not generalize well across different review categories, and (3) past methods to generate the ground-truth produced unreliable helpfulness scores, affecting the model evaluation phase.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.