Set theory with a proper class of indiscernibles

Pub Date : 2020-08-18 DOI:10.4064/fm999-2-2022
A. Enayat
{"title":"Set theory with a proper class of indiscernibles","authors":"A. Enayat","doi":"10.4064/fm999-2-2022","DOIUrl":null,"url":null,"abstract":"We investigate an extension of ZFC set theory (in an extended language) that stipulates the existence of a proper class of indiscernibles over the universe. One of the main results of the paper shows that the purely set-theoretical consequences of this extension of ZFC coincide with the theorems of the system of set theory obtained by augmenting ZFC with the (Levy) scheme whose instances assert, for each natural number $n$ in the metatheory, that there is an $n$-Mahlo cardinal $\\kappa$ with the property that the initial segment of the universe determined by $\\kappa$ is a $\\Sigma_n$-elementary submodel of the universe.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm999-2-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate an extension of ZFC set theory (in an extended language) that stipulates the existence of a proper class of indiscernibles over the universe. One of the main results of the paper shows that the purely set-theoretical consequences of this extension of ZFC coincide with the theorems of the system of set theory obtained by augmenting ZFC with the (Levy) scheme whose instances assert, for each natural number $n$ in the metatheory, that there is an $n$-Mahlo cardinal $\kappa$ with the property that the initial segment of the universe determined by $\kappa$ is a $\Sigma_n$-elementary submodel of the universe.
分享
查看原文
用一类适当的不可分辨集理论
我们研究了ZFC集合论的一个扩展(用扩展语言),它规定了在宇宙上存在一类适当的不可分辨性。本文的一个主要结果表明,ZFC的这种扩展的纯集合论结果与通过用(Levy)方案扩充ZFC而获得的集合论系统的定理一致,存在一个$n$-Mahlo基数$\kappa$,其性质是由$\kapa$确定的宇宙的初始段是宇宙的$\Sigma_n$-初等子模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信