The TAP free energy for high-dimensional linear regression

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Jia Qiu, Subhabrata Sen
{"title":"The TAP free energy for high-dimensional linear regression","authors":"Jia Qiu, Subhabrata Sen","doi":"10.1214/22-aap1874","DOIUrl":null,"url":null,"abstract":"We derive a variational representation for the log-normalizing constant of the posterior distribution in Bayesian linear regression with a uniform spherical prior and an i.i.d. Gaussian design. We work under the\"proportional\"asymptotic regime, where the number of observations and the number of features grow at a proportional rate. This rigorously establishes the Thouless-Anderson-Palmer (TAP) approximation arising from spin glass theory, and proves a conjecture of Krzakala et. al. (2014) in the special case of the spherical prior.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1874","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

Abstract

We derive a variational representation for the log-normalizing constant of the posterior distribution in Bayesian linear regression with a uniform spherical prior and an i.i.d. Gaussian design. We work under the"proportional"asymptotic regime, where the number of observations and the number of features grow at a proportional rate. This rigorously establishes the Thouless-Anderson-Palmer (TAP) approximation arising from spin glass theory, and proves a conjecture of Krzakala et. al. (2014) in the special case of the spherical prior.
高维线性回归的TAP自由能
我们推导了均匀球面先验和i.i.d高斯设计的贝叶斯线性回归中后验分布的对数归一化常数的变分表示。我们在“比例”渐近状态下工作,其中观测值的数量和特征的数量以比例速率增长。这严格地建立了自旋玻璃理论产生的thoulless - anderson - palmer (TAP)近似,并证明了Krzakala et. al.(2014)在球形先验的特殊情况下的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信