Maximal Length Projections in Group Algebras with Applications to Linear Rank Tests of Uniformity

Anna E. Bargagliotti, Michael E. Orrison
{"title":"Maximal Length Projections in Group Algebras with Applications to Linear Rank Tests of Uniformity","authors":"Anna E. Bargagliotti, Michael E. Orrison","doi":"10.18409/JAS.V9I1.59","DOIUrl":null,"url":null,"abstract":"Let \\(G\\) be a finite group, let \\(\\mathbb{C}G\\) be the complex group algebra of \\(G\\), and let \\(p \\in \\mathbb{C}G\\). In this paper, we show how to construct submodules\\(S\\) of \\(\\mathbb{C}G\\) of a fixed dimension with the property that the orthogonal projection of \\(p\\) onto \\(S\\) has maximal length. We then provide an example of how such submodules for the symmetric group \\(S_n\\) can be used to create new linear rank tests of uniformity in statistics for survey data that arises when respondents are asked to give a complete ranking of \\(n\\) items.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18409/JAS.V9I1.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G\) be a finite group, let \(\mathbb{C}G\) be the complex group algebra of \(G\), and let \(p \in \mathbb{C}G\). In this paper, we show how to construct submodules\(S\) of \(\mathbb{C}G\) of a fixed dimension with the property that the orthogonal projection of \(p\) onto \(S\) has maximal length. We then provide an example of how such submodules for the symmetric group \(S_n\) can be used to create new linear rank tests of uniformity in statistics for survey data that arises when respondents are asked to give a complete ranking of \(n\) items.
群代数中的最大长度投影及其在一致性线性秩检验中的应用
设\(G\)是有限群,设\(\mathbb{C}G\)是\(G\)的复群代数,设\(p\in\mathbb{C}G\)。在本文中,我们展示了如何构造\(\mathbb)的子模\(S\){C}G\)具有\(p\)到\(S\)上的正交投影具有最大长度的性质。然后,我们提供了一个例子,说明如何使用对称群\(S_n\)的子模块来创建新的线性秩检验,以检验调查数据的统计一致性,当受访者被要求对\(n\)项进行完整排序时会出现这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信