Life-span of Blowup Solutions to Semilinear Wave Equation with Space-dependent Critical Damping

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Ikeda, M. Sobajima
{"title":"Life-span of Blowup Solutions to Semilinear Wave Equation with Space-dependent Critical Damping","authors":"M. Ikeda, M. Sobajima","doi":"10.1619/fesi.64.137","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the blowup phenomena for initial value problem of semilinear wave equation with critical space-dependent damping term (DW:$V$). The main result of the present paper is to give a solution of the problem and to provide a sharp estimate for lifespan for such a solution when $\\frac{N}{N-1}<p\\leq p_S(N+V_0)$, where $p_S(N)$ is the Strauss exponent for (DW:$0$). The main idea of the proof is due to the technique of test functions for (DW:$0$) originated by Zhou--Han (2014, MR3169791). Moreover, we find a new threshold value $V_0=\\frac{(N-1)^2}{N+1}$ for the coefficient of critical and singular damping $|x|^{-1}$.","PeriodicalId":55134,"journal":{"name":"Funkcialaj Ekvacioj-Serio Internacia","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Funkcialaj Ekvacioj-Serio Internacia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.64.137","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

This paper is concerned with the blowup phenomena for initial value problem of semilinear wave equation with critical space-dependent damping term (DW:$V$). The main result of the present paper is to give a solution of the problem and to provide a sharp estimate for lifespan for such a solution when $\frac{N}{N-1}
具有空间相关临界阻尼的半线性波动方程爆破解的寿命
本文研究了具有临界空间相关阻尼项(DW:$V$)的双线性波动方程初值问题的爆破现象。当$\frac{N}{N-1}<p\leq p_S(N+V_0)$时,本文的主要结果是给出了该问题的解决方案,并对这种解决方案的寿命进行了尖锐的估计,其中$p_S(N)$是(DW:$0$)的Strauss指数。证明的主要思想是由于周-韩(2014,MR3169791)提出的(DW:0$)的测试函数技术。此外,我们还发现了临界和奇异阻尼系数$|x|^{-1}$的一个新的阈值$V_0=\frac{(N-1)^2}{N+1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信