A Combinatorial Proof of the Unimodality and Symmetry of Weak Composition Rank Sequences

Pub Date : 2022-12-11 DOI:10.1007/s00026-022-00624-0
Yueming Zhong
{"title":"A Combinatorial Proof of the Unimodality and Symmetry of Weak Composition Rank Sequences","authors":"Yueming Zhong","doi":"10.1007/s00026-022-00624-0","DOIUrl":null,"url":null,"abstract":"<div><p>A weak composition of an integer <i>s</i> with <i>m</i> parts is a way of writing <i>s</i> as the sum of a sequence of non-negative integers of length <i>m</i>. Given two positive integers <i>m</i> and <i>n</i>, let <i>N</i>(<i>m</i>, <i>n</i>) denote the set of all weak compositions <span>\\(\\alpha =(\\alpha _1,\\dots ,\\alpha _m)\\)</span> with <span>\\(0 \\le \\alpha _i \\le n\\)</span> for <span>\\(1 \\le i \\le m\\)</span> and <span>\\(c_w^{m,n}(s)\\)</span> be the number of weak composition of <i>s</i> into <i>m</i> parts with no part exceeding <i>n</i>. A poset is called a symmetric chain decomposition if the poset can be expressed as a disjoint union of symmetric chains. In this paper, we show that the poset <i>N</i>(<i>m</i>, <i>n</i>) can be expressed as a disjoint of symmetric chains by constructive method, which implies that its rank sequence <span>\\(c_w^{m,n}(0),c_w^{m,n}(1),\\dots ,c_w^{m,n}(mn)\\)</span> is unimodal and symmetric.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00624-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A weak composition of an integer s with m parts is a way of writing s as the sum of a sequence of non-negative integers of length m. Given two positive integers m and n, let N(mn) denote the set of all weak compositions \(\alpha =(\alpha _1,\dots ,\alpha _m)\) with \(0 \le \alpha _i \le n\) for \(1 \le i \le m\) and \(c_w^{m,n}(s)\) be the number of weak composition of s into m parts with no part exceeding n. A poset is called a symmetric chain decomposition if the poset can be expressed as a disjoint union of symmetric chains. In this paper, we show that the poset N(mn) can be expressed as a disjoint of symmetric chains by constructive method, which implies that its rank sequence \(c_w^{m,n}(0),c_w^{m,n}(1),\dots ,c_w^{m,n}(mn)\) is unimodal and symmetric.

Abstract Image

分享
查看原文
弱组合秩序列的单模态与对称性的组合证明
具有m个部分的整数s的弱合成是将s写成长度为m的非负整数序列的和的一种方式。给定两个正整数m和n,设N(m,N)表示所有弱合成的集合\(\alpha=(\alpha _1,\dots,\alpha _m)\),其中\(0\le \alpha _i\le N\)用于\(1\le i\le m\),并且\(c_w^{m,N}(s)\)是s的弱合成为m个部分且不超过N的数量。如果偏序集可以表示为对称链的不相交并集,则称为对称链分解。本文用构造方法证明了偏序集N(m,N)可以表示为对称链的不相交,这意味着它的秩序列(c_w^{m,N}(0),c_w^{m,N}(1),\dots,c_w^{m,N}(mn))是单峰对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信