Salvatore D’oro, L. Galluccio, S. Palazzo, G. Schembra
{"title":"Exploiting Congestion Games to Achieve Distributed Service Chaining in NFV Networks","authors":"Salvatore D’oro, L. Galluccio, S. Palazzo, G. Schembra","doi":"10.1109/JSAC.2017.2659298","DOIUrl":null,"url":null,"abstract":"The network function virtualization (NFV) paradigm has gained increasing interest in both academia and industry as it promises scalable and flexible network management and orchestration. In NFV networks, network services are provided as chains of different virtual network functions (VNFs), which are instantiated and executed on dedicated VNF-compliant servers. The problem of composing those chains is referred to as the service chain composition problem. In contrast to centralized solutions that suffer from scalability and privacy issues, in this paper, we leverage non-cooperative game theory to achieve a low-complexity distributed solution to the above-mentioned problem. Specifically, to account for selfish and competitive behavior of users, we formulate the service chain composition problem as an atomic weighted congestion game with unsplittable flows and player-specific cost functions. We show that the game possesses a weighted potential function and admits a Nash equilibrium (NE). We prove that the price of anarchy is upper-bounded, and also propose a distributed and privacy-preserving algorithm which provably converges toward an NE of the game in polynomial time. Finally, through extensive numerical results, we assess the performance of the proposed distributed solution to the service chain composition problem.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"35 1","pages":"407-420"},"PeriodicalIF":13.8000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2017.2659298","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2017.2659298","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 65
Abstract
The network function virtualization (NFV) paradigm has gained increasing interest in both academia and industry as it promises scalable and flexible network management and orchestration. In NFV networks, network services are provided as chains of different virtual network functions (VNFs), which are instantiated and executed on dedicated VNF-compliant servers. The problem of composing those chains is referred to as the service chain composition problem. In contrast to centralized solutions that suffer from scalability and privacy issues, in this paper, we leverage non-cooperative game theory to achieve a low-complexity distributed solution to the above-mentioned problem. Specifically, to account for selfish and competitive behavior of users, we formulate the service chain composition problem as an atomic weighted congestion game with unsplittable flows and player-specific cost functions. We show that the game possesses a weighted potential function and admits a Nash equilibrium (NE). We prove that the price of anarchy is upper-bounded, and also propose a distributed and privacy-preserving algorithm which provably converges toward an NE of the game in polynomial time. Finally, through extensive numerical results, we assess the performance of the proposed distributed solution to the service chain composition problem.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.