Baxi Chong, Tianyu Wang, Jennifer M. Rieser, Bo Lin, Abdul Kaba, Grigoriy Blekherman, H. Choset, D. Goldman
{"title":"Frequency modulation of body waves to improve performance of sidewinding robots","authors":"Baxi Chong, Tianyu Wang, Jennifer M. Rieser, Bo Lin, Abdul Kaba, Grigoriy Blekherman, H. Choset, D. Goldman","doi":"10.1177/02783649211037715","DOIUrl":null,"url":null,"abstract":"Sidewinding is a form of locomotion executed by certain snakes and has been reconstructed in limbless robots; the gait is beneficial because it is effective in diverse terrestrial environments. Sidewinding gaits are generated by coordination of horizontal and vertical traveling waves of body undulation: the horizontal wave largely sets the direction of sidewinding with respect to the body frame while the vertical traveling wave largely determines the contact pattern between the body and the environment. When the locomotor’s center of mass leaves the supporting polygon formed by the contact pattern, undesirable locomotor behaviors (such as unwanted turning or unstable oscillation of the body) can occur. In this article, we develop an approach to generate desired translation and turning by modulating the vertical wave. These modulations alter the distribution of body–environment contact patches and can stabilize configurations that were previously statically unstable. The approach first identifies the spatial frequency of the vertical wave that statically stabilizes the locomotor for a given horizontal wave. Then, using geometric mechanics tools, we design the coordination between body waves that produces the desired translation or rotation. We demonstrate the effectiveness of our technique in numerical simulations and on experiments with a 16-joint limbless robot locomoting on flat hard ground. Our scheme broadens the range of movements and behaviors accessible to sidewinding locomotors at low speeds, which can lead to limbless systems capable of traversing diverse terrain stably and/or rapidly.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"40 1","pages":"1547 - 1562"},"PeriodicalIF":7.5000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649211037715","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 14
Abstract
Sidewinding is a form of locomotion executed by certain snakes and has been reconstructed in limbless robots; the gait is beneficial because it is effective in diverse terrestrial environments. Sidewinding gaits are generated by coordination of horizontal and vertical traveling waves of body undulation: the horizontal wave largely sets the direction of sidewinding with respect to the body frame while the vertical traveling wave largely determines the contact pattern between the body and the environment. When the locomotor’s center of mass leaves the supporting polygon formed by the contact pattern, undesirable locomotor behaviors (such as unwanted turning or unstable oscillation of the body) can occur. In this article, we develop an approach to generate desired translation and turning by modulating the vertical wave. These modulations alter the distribution of body–environment contact patches and can stabilize configurations that were previously statically unstable. The approach first identifies the spatial frequency of the vertical wave that statically stabilizes the locomotor for a given horizontal wave. Then, using geometric mechanics tools, we design the coordination between body waves that produces the desired translation or rotation. We demonstrate the effectiveness of our technique in numerical simulations and on experiments with a 16-joint limbless robot locomoting on flat hard ground. Our scheme broadens the range of movements and behaviors accessible to sidewinding locomotors at low speeds, which can lead to limbless systems capable of traversing diverse terrain stably and/or rapidly.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.